Tag Archives: Space Flight

4 April 1968: 12:00:01.38 UTC, T plus 00:00:00.38

Apollo 6 (AS-502) launch, 07:00:01 EST, 4 April 1968 (NASA)
Apollo 6 (AS-502) launch, 07:00:01 EST, 4 April 1968 (NASA)

4 April 1968: At 07:00:01.38 EST, Apollo 6 (AS-502), the second and last unmanned Apollo mission, lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida. First motion was detected at Range Time 00:00:00.38. The purpose of the flight was to determine that an all-up Saturn V could attain Trans Lunar Injection. Because of engine difficulties, it did not do so, but data from the test gave mission planners confidence to go ahead with manned flights.

At T+2:05 the Saturn V experienced a severe “pogo” oscillation, but no structural damage occurred. Next, several structural panels from the lunar module adaptor section were lost due to a manufacturing defect. Finally, during the second stage burn, two of the five Rocketdyne J-2 engines shut down prematurely. Because of this, the planned circular orbit at 175 kilometers altitude was not achieved, instead, the spacecraft entered a 106.9 × 138.6 miles (172.1 × 223.1 kilometers) orbit, circling Earth in 89.8 minutes.

After two orbits, it was planned to send Apollo 6 to the Trans Lunar Injection point, but the third stage engine would not fire. The Service Module engine was used to boost the spacecraft to a peak altitude of 13,810.2 miles (22,225.4 kilometers) and a planned lunar re-entry simulation was carried out. Apollo 6 reached 22,385 miles per hour (36,025 kilometers per hour) as it reentered the atmosphere. 9 hours, 57 minutes, 20 seconds after launch, Apollo 6 splashed down in the Pacific Ocean north of Hawaii and was recovered by USS Okinawa (LPH-3).

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet (110.642 meters) tall. The first and second stages were 33 feet (10.058 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms). It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,850.97 kilonewtons).¹ These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (717.28 kilonewtons).

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

¹ The five Rocketdyne F-1 engines of the AS-502 S-IC first stage produced a combined thrust of 7,567,000 pounds (33,660 kilonewtons), 15,000 pounds (67 kilonewtons) less than predicted.

© 2018, Bryan R. Swopes

28 March 1935

Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution, Image Number 84-8949)
Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution)

28 March 1935: Near Roswell, New Mexico, Robert H. Goddard successfully launched the first gyroscopically-stabilized liquid-fueled rocket. In a 20-second flight, the A Series rocket, number A-5, reached an altitude of 4,800 feet (1,463 meters) and traveled 13,000 feet (3,962 meters) down range. Its speed was 550 miles per hour (885 kilometers per hour). During the flight, the rocket corrected its flight path several times.

"Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower." (NASA)
“Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower.” (U.S. Air Force)
Goddard A-series rocket. (Clark University)

The A Series rockets were of varying lengths and mass. The representative A-series rocket displayed at the National Air and Space Museum is 15 feet, 4½ inches (468.63 centimeters) long with a diameter of 9 inches (22.86 centimeters). The span across the fins is 1 foot, 9½ inches (54.61 centimeters). It weighs 78.5 pounds (35.6 kilograms). The rocket was fueled with gasoline and liquid oxygen, pressurized with nitrogen.

A gyroscope controlled vanes placed in the engine’s exhaust, providing stabilization during powered flight.

Goddard flew the A-series 14 times between 15 January and 29 October 1935.

The National Air and Space Museum describes the rocket’s construction:

“Aluminum skin, thin gauge, a long tail section from bottom of fins to bottom of mid-section. Aluminum skin also on parachute section and nosecone wholly of spun aluminum except for steel attachment screw. Steel skin (for greater strength and insulation) below nosecone, over mid-section (over propellant tanks), and around small section above fins. One steel tube or pipe on each side of rocket, along propellant section; one smaller diameter copper tube on one side. Steel nozzle and other interior components. Fabric parachute.”

Goddard is the “Father of Modern Rocketry.” Many of his developments were copied by German engineers as they developed the V2 rocket of World War II. And this led to America’s own post-War rocket developments, including the mighty Saturn V moon rocket.

This photograph, taken at the launch site, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, Harry F. Guggenheim, Dr. Goddard, Charles A. Lindbergh, Nils T. Ljungquist and Charles Mansur. (U.S. Air Force)
This photograph, taken at the launch site in New Mexico, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, machinist; Harry F. Guggenheim, philanthropist; Dr.Robert H. Goddard; Charles A. Lindbergh, aviator; Nils T. Ljungquist, machinist; and Charles Mansur, a welder. (U.S. Air Force)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. (NASM)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. It is constructed from parts of several A-series rockets which had been test flown. (NASM)
An April 1932 version of Goddard’s gyroscopic stabilization unit. (National Aeronautics and Space Administration GPN-2002-000137)

© 2020, Bryan R. Swopes

21 February 1961

Project Mercury astronauts with Convair F-106B-75-CO Delta Dart 59-0158. (NASA)
Project Mercury astronauts with Convair F-106B-75-CO Delta Dart 59-0158. (NASA)

21 February 1961: Final training begins for Mercury 7 astronauts. Alan Shepard, Gus Grissom and John Glenn are selected for the initial flights. Left-to-Right: Scott Carpenter, Gordon Cooper, John Glenn, Gus Grissom, Wally Schirra, Alan Shepard and Deke Slayton.

The aircraft in the photograph is a Convair F-106B-75-CO Delta Dart, 59-0158, a two-place supersonic interceptor trainer.

© 2015, Bryan R. Swopes

John Watts Young (24 September 1930–5 January 2018)

John Watts Young (NASA)
John Watts Young (NASA)

JOHN W. YOUNG (CAPTAIN, USN RET.)
NASA ASTRONAUT (FORMER)

PERSONAL DATA: Born September 24, 1930, in San Francisco, California. Married to the former Susy Feldman of St. Louis, Missouri. Two children, three grandchildren. Enjoys wind surfing, bicycling, reading, and gardening.

EDUCATION: Graduated from Orlando High School, Orlando, Florida; received a bachelor of science degree in aeronautical engineering with highest honors from Georgia Institute of Technology in 1952.

ORGANIZATIONS: Fellow of the American Astronautical Society (AAS), the Society of Experimental Test Pilots (SETP), and the American Institute of Aeronautics and Astronautics (AIAA).

SPECIAL HONORS: Awarded the Congressional Space Medal of Honor (1981), 4 NASA Distinguished Service Medals, NASA Outstanding Leadership Medal (1992), NASA Exceptional Engineering Achievement Medal (1987), NASA Outstanding Achievement Medal (1994), Navy Astronaut Wings (1965), 2 Navy Distinguished Service Medals, 3 Navy Distinguished Flying Crosses, the Georgia Tech Distinguished Young Alumni Award (1965), Distinguished Service Alumni Award (1972), the Exceptional Engineering Achievement Award (1985), the Academy of Distinguished Engineering Alumni (1994), and the American Astronautical Society Space Flight Award (1993), Distinguished Executive Award (1998), Rotary National Space Achievement Award (2000). Inducted into 6 Aviation and Astronaut Halls of Fame. Recipient of more than 80 other major awards, including 6 honorary doctorate degrees.

NAVY EXPERIENCE: Upon graduation from Georgia Tech, Young entered the United States Navy. After serving on the west coast destroyer USS LAWS (DD-558) in the Korean War, he was sent to flight training. He was then assigned to Fighter Squadron 103 for 4 years, flying Cougars and Crusaders.

After test pilot training at the U.S. Navy Test Pilot School in 1959, he was assigned to the Naval Air Test Center for 3 years. His test projects included evaluations of the Crusader and Phantom fighter weapons systems. In 1962, he set world time-to-climb records to 3,000-meter and 25,000-meter altitudes in the Phantom. Prior to reporting to NASA, he was maintenance officer of Phantom Fighter Squadron 143. Young retired from the Navy as a Captain in September 1976, after completing 25 years of active military service.

NASA EXPERIENCE: In September 1962, Young was selected as an astronaut. He is the first person to fly in space six times from earth, and seven times counting his lunar liftoff. The first flight was with Gus Grissom in Gemini 3, the first manned Gemini mission, on March 23, 1965. This was a complete end-to-end test of the Gemini spacecraft, during which Gus accomplished the first manual change of orbit altitude and plane and the first lifting reentry, and Young operated the first computer on a manned spacecraft. On Gemini 10, July 18-21, 1966, Young, as Commander, and Mike Collins, as Pilot, completed a dual rendezvous with two separate Agena target vehicles. While Young flew close formation on the second Agena, Mike Collins did an extravehicular transfer to retrieve a micro meteorite detector from that Agena. On his third flight, May 18-26, 1969, Young was Command Module Pilot of Apollo 10. Tom Stafford and Gene Cernan were also on this mission which orbited the Moon, completed a lunar rendezvous, and tracked proposed lunar landing sites. His fourth space flight, Apollo 16, April 16-27, 1972, was a lunar exploration mission, with Young as Spacecraft Commander, and Ken Mattingly and Charlie Duke. Young and Duke set up scientific equipment and explored the lunar highlands at Descartes. They collected 200 pounds of rocks and drove over 16 miles in the lunar rover on three separate geology traverses.

Young’s fifth flight was as Spacecraft Commander of STS-1, the first flight of the Space Shuttle, April 12-14, 1981, with Bob Crippen as Pilot. The 54-1/2 hour, 36-orbit mission verified Space Shuttle systems performance during launch, on orbit, and entry. Tests of the Orbiter Columbia included evaluation of mechanical systems including the payload bay doors, the attitude and maneuvering rocket thrusters, guidance and navigation systems, and Orbiter/crew compatibility. One hundred and thirty three of the mission’s flight test objectives were accomplished. The Orbiter Columbia was the first manned spaceship tested during ascent, on orbit, and entry without benefit of previous unmanned missions. Columbia was also the first winged reentry vehicle to return from space to a runway landing. It weighed about 98 tons as Young landed it on the dry lakebed at Edwards Air Force Base, California.

Young’s sixth flight was as Spacecraft Commander of STS-9, the first Spacelab mission, November 28-December 8, 1983, with Pilot Brewster Shaw, Mission Specialists Bob Parker and Owen Garriott, and Payload Specialists Byron Lichtenberg of the USA and Ulf Merbold of West Germany. The mission successfully completed all 94 of its flight test objectives. For ten days the 6-man crew worked 12-hour shifts around-the-clock, performing more than 70 experiments in the fields of atmospheric physics, Earth observations, space plasma physics, astronomy and solar physics, materials processing and life sciences. The mission returned more scientific and technical data than all the previous Apollo and Skylab missions put together. The Spacelab was brought back for re-use, so that Columbia weighed over 110 tons as Young landed the spaceship at Edwards Air Force Base, California.

Young was also on five backup space flight crews: backup pilot in Gemini 6, backup command module pilot for the second Apollo mission (before the Apollo Program fire) and Apollo 7, and backup spacecraft commander for Apollo 13 and 17. In preparation for prime and backup crew positions on eleven space flights, Young has put more than 15,000 hours into training so far, mostly in simulators and simulations.

He has logged more than 15,275 hours flying time in props, jets, helicopters, rocket jets, more than 9,200 hours in T-38s, and six space flights of 835 hours.

In January 1973, Young was made Chief of the Space Shuttle Branch of the Astronaut Office, providing operational and engineering astronaut support for the design and development of the Space Shuttle. In January 1974, he was selected to be Chief of the Astronaut Office, with responsibility for the coordination, scheduling, and control of activities of the astronauts. Young served as Chief of the Astronaut Office until May 1987. During his tenure, astronaut flight crews participated in the Apollo-Soyuz joint American-Russian docking mission, the Space Shuttle Orbiter Approach and Landing Test Program, and 25 Space Shuttle missions. From May 1987 to February 1996, Young served as Special Assistant to the Director of JSC for Engineering, Operations, and Safety. In that position, he had direct access to the Center Director and other senior managers in defining and resolving issues affecting the continued safe operation of the Space Shuttle. Additionally, he assisted the Center Director in providing advice and counsel on engineering, operational, and safety matters related to the Space Station, Shuttle upgrades, and advanced human Space Exploration Programs, back to the Moon and on to Mars.

In February 1996 Young was assigned as Associate Director (Technical), responsible for technical, operational and safety oversight of all Agency Programs and activities assigned to the Johnson Space Center. On December 31, 2004 Young retired from NASA. He continues to advocate the development of the technologies that will allow us to live and work on the Moon and Mars. Those technologies over the long (or short) haul will save civilization on Earth.

— The official biography of John W. Young from the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas 77058 .

20 August 1977

Voyager 2/Titan IIIE-Centaur launch, LC-41, Kennedy Space Center, Florida, 20 August 1977. (NASA)

20 August 1977: Voyager 2 was launched from Launch Complex 41 at the Kennedy Space Center, Cape Canaveral, Florida, aboard a Titan IIIE-Centaur launch vehicle. It was placed on an orbital trajectory that would take it on a journey throughout the Solar System and beyond.

Nearly two years later, 9 July 1979, Voyager 2 made its closest approach to Jupiter, passing within 350,000 miles (570,000 kilometers) of the planet. Many dramatic images as well as scientific data were transmitted back to Earth.

Artist’s concept of Voyager. (NASA/JPL)

The probe continued outward to Saturn, Neptune and Uranus, continuously transmitting images and data. In 1990, the space probe passed beyond the limits of the Solar System.

Voyager 2 is now in interstellar space. It crossed the heliopause, where “solar wind” is slowed by the pressure of interstellar gas, 5 November 2018. It is still operating, 46 years after it was launched.

Voyager 2 captured this image of the moon Io transiting Jupiter, 9 July 1979. (NASA)
Uranus, imaged by Voyager 2, 24 January 1986. (NASA/JPL–Caltech)
This image of Neptune was captured by Voyager 2 on 20 August 1989, 28 years ago. (NASA)

On 21 July 2023, an erroneous instruction caused Voyager 2 to turn its antenna away from Earth, but on 5 August 2023, contact was reestablished. A power reduction strategy is hoped to allow the space probe to continue operating until 2026.

As of today, (19 August 2023) Voyager 2 is 133.5 Astronomical Units from Earth (19,977,744,317 kilometers/12,413,594,804 statute miles/10,787,118,961 nautical miles). Radio signals, traveling at the Speed of Light, take more than 18.5 hours to cross that distance. It continues outbound at a rate of 3.3 AU/year.

© 2023, Bryan R. Swopes