Tag Archives: Test Pilot

15 December 2006

AA-1. the first prototype Lockheed Martin F-22A Lightning II, takes off at Fort Worth, Texas, 12:44 p.m., CST, 15 December 2006. (Lockheed Martin Aeronautics Co.)
AA-1, the first prototype Lockheed Martin F-35A Lightning II, takes off at Fort Worth, Texas, 12:44 p.m., CST, 15 December 2006. (Lockheed Martin Aeronautics Co.)

15 December 2006: Lockheed Martin Chief Test Pilot Jon S. Beesely takes the first prototype F-35A Lightning II stealth strike fighter for its first test flight at Forth Worth, Texas. Taking off at 12:44 p.m., Central Standard Time (18:44 UTC), Beesley took the prototype, designated AA-1, to 15,000 feet (4,572 meters) at 225 knots (259 miles per hour/417 kilometers per hour) to test the aircraft in landing configuration prior to continuing with other tests.

Beesely said that the F-35A, “. . . handled well, better than the simulator.” He compared it to the Lockheed Martin F-22 Raptor, and said that it handled like the Raptor, but better.

During the flight a minor problem occurred when two sensors disagreed. Although this was simply a calibration problem, test protocol required that Beesley bring the airplane back. He landed at Fort Worth at 1:19 p.m.

Jon S. Beesley in teh cockpit of Lockheed Martin's prototype F-35A Lightning II. (Lockheed Martin Aeronautics Company)
Jon S. Beesley in the cockpit of Lockheed Martin’s prototype F-35A Lightning II. (Lockheed Martin Aeronautics Company)

Jon Stephan Beesley was born 5 August 1950 at Rexburg, Idaho. After graduating from Madison High School in Rexburg, he studied at Ricks College, then a two-year school, where he was also captain of the school’s ski team.

Jon Beesley married Miss Evona Christensen, 29 May 1970. They would have six children.

In 1972, Beesley graduated from Utah State University at Logan, Utah, with a bachelor of science degree (B.S.) in physics. Following graduation, Beesley was commissioned as a second lieutenant in the United States Air Force, and sent for flight training at Reese Air Force Base, Lubbock, Texas. He was awarded his pilot’s wings in 1974.

1st Lieutenant Beesley was assigned to the 32nd Tactical Fighter Squadron, 36th Tactical Fighter Wing, stationed at Soesterberg Air Base, The Netherlands. The squadron was equipped with the McDonnell Douglas F-4E Phantom II.

Two McDonnell Douglas F-4E Phantom IIs of the 32nd Tactical Fighter Squadron take off from Soesterberg Air Base, 1975. (U.S. Air Force)

Lieutenant Beesley was next sent to the U.S. Air Force Test Pilot School at Edwards Air Force Base in California, graduating in 1979. Beesley was then assigned as a project test pilot for the Lockheed YF-117A Nighthawk (his call sign, “Bandit 102”), and as the operations officer of the F-117A Combined Test Force based at Groom Lake, Nevada (Area 51). Major Beesley was awarded the Distinguished Flying Cross for saving YF-117A (FSD-2) 79-10781 when the left tail fin departed the aircraft while pulling up during a weapons test, 25 September 1985.

FSD-2, the second Lockheed YF-117A Full-Scale Development Aircraft, 79-10781, at the National Museum of the United States Air Force. (U.S. Air Force)

Major Beeseley retired from the Air Force in 1986. He then became a test pilot for General Dynamics, where he tested various configurations of the F-16, including Falcon Eye, and project test pilot prototype YF-22. Through a series of mergers, General Dynamics evolved into today’s Lockheed Martin Aeronautics Company.

The two Lockheed-Boeing-General Dynamics YF-22 prototypes s at Edwards Air Force Base, California. (U.S. Air Force)

In 1996, the Society of Experimental Test Pilots honored Jon Beesley with its Iven C. Kincheloe Award for his work with the F-117 Combined Test Force (the award was retroactive to 1983). The Kincheloe Award “recognizes outstanding professional accomplishment in the conduct of flight-testing by a test pilot member of the Society of Experimental Test Pilots.”

In 2000, The Engineers’ Council awarded Beesley its Brigadier General Charles E. “Chuck” Yeager International Aeronautical Achievements Award for his “lifetime career of dedication to the progress of aerospace technology.”

The Society of Experimental Test Pilots selected Jon Beesley for the Kincheloe Award a second time in 2007, for his work with the F-35A.

After testing the three configurations of the Joint Strike Fighter, the F-35A, F-35B and F-35C, Jon Beesley retired in 2011.

Lockheed Martin F-35A Lightning II AA-1 in flight. (U. S. Air Force)

The Lockheed Martin F-35 Lightning II is a “multirole” stealth fighter capable of air defense, ground attack and reconnaissance. There are three variants: The F-35A is designed for conventional takeoff and landing; the F-35B is a short takeoff/vertical landing variant; and the F-35C is for use aboard aircraft carriers.

The F-35A Lightning II is a single-place, single-engine supersonic stealth aircraft. It is 51.4 feet (15.7 meters) long with a wingspan of 35 feet (10.7 meters) and overall height of 14.4 feet (4.28 meters). It has an empty weight of 29,300 pounds (13,290 kilograms) and can carry 18,000 pounds of weapons. Maximum takeoff weight is 70,000 pounds (31,800 kilograms). (Specifications differ for other variants.)

The F-35 is powered by one Pratt & Whitney F135-PW-100 turbofan engine. This is an axial-flow engine with a 3-stage fan section, 6 stage compressor and 2 stage turbine section (1 high- and 1 low-pressure stage.) The engine is rated at 43,000 pounds of thrust (191.17 kilonewtons) with afterburner.It is 18 feet, 4 inches (5.500 meters) long, 3 feet, 7 inches (1.092 meters) in diameter, and weighs 3,750 pounds (1,701 kilograms).

Maximum speed of the F-35A with internal weapons is Mach 1.6+.

The F-35A is armed with a General Dynamics GAU-22/A 25mm four-barrel rotary cannon with 180 rounds of ammunition. The gun has a rate of fire of 3,300 rounds per minute. The standard weapons load consists of two AIM-120C AMRAAM air-to-air missiles and two 2,000 pound GBU-31 JDAM guided bombs carried in an internal bay.

The United States Air Force planned on buying 1,763 F-35As. The U.S. Navy will get 260 F-35Cs while the Marine Corps plans for 420 F-35Bs. Ten other counties have ordered various configurations of the lightning II. As of September 2018, about 320 F-35s had been built, but the production rate has been slowed to just 150 airplanes per year.

After completing its test program of 91 flights, in 2009 F-35A AA-1 was turned over to the U.S. Navy for use as a live fire target at NAWC China Lake, California.

Lockheed Martin F-35A Lightning II, AA-1, parkied in its hangar. (Lockheed Martin Aeronautics Company)
Lockheed Martin F-35A Lightning II, AA-1, parked in its hangar. (Lockheed Martin Aeronautics Company)

© 2018, Bryan R. Swopes

14 December 1959

Captain Joe Bailey Jordan, U.S. Air Force, in the cockpit of his record-setting Lockheed F-104C Starfighter. (U.S. Air Force)
Captain Joe Bailey Jordan, U.S. Air Force, in the cockpit of his record-setting Lockheed F-104C Starfighter. (U.S. Air Force)

14 December 1959: Air Force test pilot Captain Joe Bailey Jordan, United States Air Force, established a Fédération Aéronautique Internationale (FAI) World Record for Altitude in a Turbojet Aircraft, breaking a record set only 8 days before by Commander Lawrence E. Flint, Jr., U.S. Navy, flying the number two prototype McDonnell YF4H-1 Phantom II, Bu. No. 142260.¹

Lockheed F-104C-5-LO Starfighter 56-885. (U.S. Air Force)
Lockheed F-104C-5-LO Starfighter 56-885. (U.S. Air Force)

Flying a slightly modified Lockheed F-104C-5-LO Starfighter, 56-885, (the aft fuselage had been replaced by one from a two-place F-104B, which had larger tail surfaces), Jordan released the brakes at Edwards Air Force Base, and 15 minutes, 4.92 seconds later he reached 30,000 meters (98,425 feet) establishing an Fédération Aéronautique Internationale (FAI) world record for time-to-altitude.² The Starfighter continued the zoom climb profile, peaking at 103,389 feet (31,513 meters) ³ and going over the top at 455 knots (843 kilometers per hour). While accelerating for the zoom maneuver, Jordan’s F-104 reached Mach 2.36.

The Harmon International Trophy (NASM)

Fédération Aéronautique Internationale rules required that a new record must exceed the previous record by 3%. The Starfighter beat the Phantom II’s peak altitude by 4.95%. Captain Jordan was credited for his very precise flying and energy efficiency. For this flight, Captain Jordan was awarded the Harmon International Trophy, which was presented to him by President Dwight D. Eisenhower.

Joe Bailey Jordan was born at Huntsville, Texas, 12 June 1929, the son of James Broughtan Jordan, a track foreman, and Mattie Lee Simms Jordan. Jordan graduated from Sweeney High School in 1946, then studied at the University of Houston. He entered the United States Air Force in 1949, trained as a pilot and received his pilot’s wings 15 September 1950. He flew more than 100 missions during the Korean War, and received two Distinguished Flying Crosses and two Air Medals. He then served as a flight instructor at Laredo Air Force Base, Laredo, Texas. In 1961 he was stationed at Bitburg Air Base in Germany. Jordan was a graduate of both the Air Force Test Pilot School and the Air Force Fighter Weapons School. He became a project test pilot on the F-104 in 1956.

Jordan married Dolores Ann Craig of Spokane, Washington, 8 February 1958, at Santa Monica, California. They had two children, Carrie and Ken.

Colonel Jordan was the first Western pilot to fly the Mikoyan-Gurevich MiG-21 interceptor and his evaluations allowed U.S. pilots to exploit the MiG’s weaknesses during the Vietnam War.

General Dynamics F-111A 65-5701. Photographed by Hervé Cariou at the Salon du Bourget (Paris Air Show), May 1967.

While testing General Dynamics F-111A 65-5701, Jordan and his co-pilot were forced to eject in the fighter’s escape capsule when the aircraft caught fire during a gunnery exercise at Edwards AFB, 2 January 1968. His back was injured in the ejection.

After Jordan retired from the Air Force in 1972, he became an engineering test pilot for the Northrop Corporation’s YF-17 flight test program.

Lieutenant Colonel Joe Bailey Jordan died at Oceanside, California, 22 April 1990, at the age of 60 years. His ashes were spread at Edwards Air Force Base. Jordan Street on the air base is named in his honor.

Captain Joe Bailey Jordan, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Captain Joe Bailey Jordan, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

The Lockheed F-104C Starfighter was a tactical strike variant of the F-104A interceptor. The F-104C shared the external dimensions of the F-104A, but weighed slightly less.

The F-104C was powered by a single General Electric J79-GE-7 engine, a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79-GE-7 is rated at 10,000 pounds of thrust (44.482 kilonewtons), and 15,800 pounds (70.282 kilonewtons) with afterburner. The engine is 17 feet, 4 inches (5.283 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,575 pounds (1,622 kilograms).

The F-104C could carry a 2,000 pound weapon on a centerline hardpoint. It could carry up to four AIM-9B Sidewinder missiles.

On 9 May 1961, near Moron AFB, Spain, Starfighter 56-885 had a flight control failure with stick moving full aft. The pilot was unable to move it forward, resulting in an initial zoom climb followed by unrecoverable tumble. The pilot safely ejected but the airplane crashed and was destroyed.

Captain Joe B. Jordan, USAF, is congratulated by Lockheed test pilot Tony LeVier. Captain Bailey is wearing a David Clark Co. MC-3 capstan-type partial-pressure suit with a ILC Dover MC-2 helmet. (Jet Pilot Overseas)
Captain Joe B. Jordan, USAF, is congratulated by Lockheed Chief Engineering Test Pilot Tony LeVier. Captain Bailey is wearing a David Clark Co. MC-3 capstan-type partial-pressure suit with an ILC Dover MC-2 helmet. (Jet Pilot Overseas)

A short Air Force film of Joe Jordan’s record flight can be seen at:

¹ FAI Record File Number 10352

² FAI Record File Number 9065

³ FAI Record File Number 10354

© 2018, Bryan R. Swopes

13 December 1958

NASA test pilot Einar K. Enevoldson in the cockpit of a NASA/Lockheed F-104N, N811NA, in 1984. (NASA)
NASA test pilot Einar K. Enevoldson in the cockpit of a NASA/Lockheed F-104N, N811NA, in 1984. (NASA)

13 December 1958: First Lieutenant Einar Knute Enevoldson, U.S. Air Force, set seven Fédération Aéronautique Internationale (FAI) time-to-climb records in a Lockheed F-104A-10-LO Starfighter, serial number 56-762,¹ at Naval Air Station Point Mugu (NTD) (located on the shore of southern California), including Sea Level to 3,000 meters (9,843 feet) in 41.85 seconds; 6,000 meters (19,685 feet) in 58.41 seconds; 9,000 meters (29,528 feet) in 1 minute, 21.14 seconds; 12,000 meters (39,370 feet) in 1 minute, 39.90 seconds; 15,000 meters (49,213 feet) in 2 minutes, 11.1 seconds; 20,000 meters (65,617 feet) in 3 minutes, 42.99 seconds; and 25,000 meters (82,021 feet) in 4 minutes, 26.03 seconds.

Lockheed F-104A Starfighter 56-762 being prepared for a record attempt at NAS Point Mugu. (F-104 Society)
Lockheed F-104A-10-LO Starfighter 56-762 being prepared for a record attempt at NAS Point Mugu, California. (International F-104 Society)

Lieutenant Enevoldson was awarded the Distinguished Flying Cross for these accomplishments.

The Distinguished Flying Cross
The Distinguished Flying Cross

FAI Record File Num #9107 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 3 000 m
Performance: 41.85s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9106 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 6 000 m
Performance: 58.41s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9105 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 9 000 m
Performance: 1 min 21.14s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9104 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 12 000 m
Performance: 1 min 39.90s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9103 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 15 000 m
Performance: 2 min 11.1s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9102 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 20 000 m
Performance: 3 min 42.99s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

FAI Record File Num #9080 [Direct Link]
Status: ratified – retired by changes of the sporting code
Region: World
Class: C (Powered Aeroplanes)
Sub-Class: C-1 (Landplanes)
Category: Not applicable
Group: 3 : turbo-jet
Type of record: Time to climb to a height of 25 000 m
Performance: 4 min 26.03s
Date: 1958-12-13
Course/Location: Point Mugu, CA (USA)
Claimant Einar Enevoldson (USA)
Aeroplane: Lockheed F-104A “Starfighter”
Engine: 1 G E J79

U.S. Air Force Lockheed F-104A-10-LO Starfighter 56-762 on the runaway at Naval Air Station Point Mugu, December 1958. (International F-104 Society)
U.S. Air Force Lockheed F-104A-10-LO Starfighter 56-762 on the runaway at Naval Air Station Point Mugu, December 1958. (International F-104 Society)

Einar Enevoldson later flew as a civilian test pilot for NASA from 1968 to 1986 and was awarded the NASA Exceptional Service Medal. He holds numerous FAI world records.

Lockheed F-104A-10-LO Starfighter 56-762 climbing under Southern California's overcast coastal skies. (International F-104 Society)
Lockheed F-104A-10-LO Starfighter 56-762 climbing under Southern California’s overcast coastal skies. (International F-104 Society)

The Lockheed F-104A Starfighter was a single-place, single-engine supersonic interceptor. It was designed by a team lead by the legendary Clarence L. “Kelly” Johnson. The F-104A was 54 feet, 8 inches (16.662 meters) long with a wingspan of 21 feet, 9 inches (6.629 meters) and overall height of 13 feet, 5 inches (4.089 meters). It had an empty weight of 13,184 pounds (5,980.2 kilograms), combat weight of 17,988 pounds (8,159.2 kilograms), gross weight of 22,614 pounds (10,257.5 kilograms) and a maximum takeoff weight of 25,840 pounds (11,720.8 kilograms). Internal fuel capacity was 897 gallons (3,395.5 liters).

The F-104A was powered by a single General Electric J79-GE-3A engine, a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79-GE-3A is rated at 9,600 pounds of thrust (42.70 kilonewtons), and 15,000 pounds (66.72 kilonewtons) with afterburner. The engine is 17 feet, 3.5 inches (5.271 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,325 pounds (1,508 kilograms).

The F-104A had a maximum speed of 1,037 miles per hour (1,669 kilometers per hour) at 50,000 feet (15,240 meters). Its stall speed was 198 miles per hour (319 kilometers per hour). The Starfighter’s initial rate of climb was 60,395 feet per minute (306.8 meters per second) and its service ceiling was 64,795 feet (19,750 meters).

Armament was one General Electric M61 Vulcan six-barreled revolving cannon with 725 rounds of 20 mm ammunition. An AIM-9B Sidewinder heat-seeking air-to-air missile could be carried on each wing tip, or a jettisonable fuel tank with a capacity of 141.5 gallons (535.6 liters).

Lockheed built 153 of the F-104A Starfighter initial production version. A total of 2,578 F-104s of all variants were produced by Lockheed and its licensees, Canadair, Fiat, Fokker, MBB, Messerschmitt,  Mitsubishi and SABCA. By 1969, the F-104A had been retired from service. The last Starfighter, an Aeritalia-built F-104S ASA/M of the  Aeronautica Militare Italiana, was retired in October 2004.

The same type aircraft as that flown by Einar K. Enevoldson, this is a Lockheed F-104A-10-LO Starfighter, 56-761. It is carrying both wingtip and underwing fuel tanks. (U.S. Air Force)
The same type aircraft as that flown by Einar K. Enevoldson, this is a Lockheed F-104A-10-LO Starfighter, 56-761. It is carrying both wingtip and underwing fuel tanks. (U.S. Air Force)

¹ 56-762 was one of three F-104As later converted to an NF-104A rocket/turbojet Advanced Aerospace Trainer. It is the same Starfighter that crashed when Chuck Yeager had to eject after it went into an uncontrolled spin during a zoom-climb altitude record attempt, 10 December 1963.

© 2016, Bryan R. Swopes

12 December 1953

Bell X-1A 48-1384 in flight. The frost band on the fuselage shows the location of the cryogenic propellant tank. (U.S. Air Force)

12 December 1953: On its tenth flight, U.S. Air Force test pilot Major Chuck Yeager flew the Bell X-1A rocket plane to Mach 2.435 (1,618 miles per hour/2,604 kilometers per hour) at 74,700 feet (22,769 meters), faster than anyone had flown before.

After the rocket engine was shut down, the X-1A tumbled out of control—”divergent in three axes” in test pilot speak—and fell out of the sky. It dropped nearly 50,000 feet (15,240 meters) in 70 seconds. Yeager was exposed to accelerations of +8 to -1.5 g’s. The motion was so violent that Yeager cracked the rocketplane’s canopy with his flight helmet.

Yeager was finally able to recover by 30,000 feet (9,144 meters) and landed safely at Edwards Air Force Base.

Yeager later remarked that if the X-1A had an ejection seat he would have used it.

Bell Aircraft Corporation engineers had warned Yeager not to exceed Mach 2.3.

Major Charles E. Yeager, U.S. Air Force, seated in the cockpit of the Bell X-1A, 48-1384, circa 1953. (U.S. Air Force)

The following is from Major Charles E. Yeager’s official post-flight report:

After a normal drop at 31,000 feet, chambers #4, #2, and #1 were ignited and [the] airplane was accelerated up to .8 Mach number. A flight path was formed holding .8 Mach number up to 43,000 feet where chamber #3 was ignited and the airplane accelerated in level flight to 1.1 Mach number. A climb was again started passing through 50,000 feet at 1.1 Mach number, 60,000 feet at 1.2 Mach number and a push-over was started at 62,000 feet. The top of the round-out occurred at 76,000 feet and 1.9 Mach number. The airplane was accelerated in level flight up to 2.4 [2.535 indicated] Mach number where all of the rocket chambers were cut. The flight path was very normal and nothing uneventful [sic] happened up to this point. After the engine was cut, the airplane went into a Dutch roll for approximately 2 oscillations and then started rolling to the right at a very rapid rate of roll. Full aileron and opposite rudder were applied with no effect on the rate of roll of the airplane. After approximately 8 to 10 complete rolls, the airplane stopped rolling in the inverted position and after approximately one-half of one second started rolling to the left at a rate in excess of 360 degrees per second, estimated by the pilot. At this point the pilot was completely disoriented and was not sure what maneuvers the airplane went through following the high rates of roll. Several very high ‘g’ loads both positive and negative and side loads were felt by the pilot. At one point during a negative ‘g’ load, the pilot felt the inner liner of the canopy break as the top of his pressure suit helmet came in contact with it. The first maneuver recognized by the pilot was an inverted spin at approximately 33,000 feet. The airplane then fell off into the normal spin from which the pilot recovered at 25,000 feet.

Flight test data from Yeager's 12 December 1953 flight superimposed over a photograph of the bell X-1A. (NASA)
Flight test data from Yeager’s 12 December 1953 flight superimposed over a photograph of the Bell X-1A. (NASA)

The following is a transcript of radio transmissions during the flight:

Yeager: Illegible [inaudible]—gasping—I’m down to 25,000 over Tehachapi. Don’t know
whether I can get back to the base or not.
Chase (Ridley): At 25,000 feet, Chuck?
Yeager: Can’t say much more, I got to (blurry—save myself).
Yeager: I’m—(illegible)—(Christ!)
Chase (Ridley): What say, Chuck?
Yeager: I say I don’t know if I tore anything up or not but Christ!
Chase (Murray): Tell us where you are if you can.
Yeager: I think I can get back to the base okay, Jack. Boy, I’m not going to do that any more.
Chase (Murray): Try to tell us where you are, Chuck.
Yeager: I’m (gasping)…I’ll tell you in a minute. I got 1800 lbs [nitrogen] source pressure.
Yeager: I don’t think you’ll have to run a structure demonstration on this damned thing!
Chase (Murray): Chuck from Murray, if you can give me altitude and heading, I’ll try to check you from outside.
Yeager: Be down at 18,000 feet. I’m about—I’ll be over the base at about 15,000 feet in a minute.
Chase (Murray): Yes, sir.
Yeager: Those guys were so right!
Yeager: Source pressure is still 15 seconds, I’m getting OK now.
Yeager: I got all the oscillograph data switches off. 4 fps camera off, it’s okay.
Bell Truck: Jettison and vent your tanks.
Yeager: I have already jettisoned. Now I’m venting both lox and fuel. Leaving hydrogen peroxide alone.
Bell Truck: Roger.
Yeager: I cut it, I got—in real bad trouble up there.
Yeager: Over the base right now, Kit, at 14,500 feet.
Chase (Murray): I have you.

A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)
A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)

In his autobiography, Always Another Dawn, NACA test pilot Albert Scott Crossfield wrote:

Probably no other pilot could have come through that experience alive. Much later I asked Yeager, as a matter of professional interest, exactly how he regained control of the ship. He was vague in his reply, but he said he thought that after he reached the thick atmosphere, he had deliberately put the ship into a spin.

“A spin is something I know how to get out of,” he said. “That other business— the tumble—there is no way to figure that out.”

. . . Yeager received many accolades. I didn’t begrudge him one of them. If ever a pilot deserved praise for a job well done, it was Yeager. After that X-1A episode, he never flew a rocketplane again.

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, Chapter 19 at Pages 183–184.  

Bell X-1A 48-1384 (U.S. Air Force)

The Bell X-1A, 48-1384, was an experimental rocket-powered high-speed, high-altitude research aircraft. It was one of four second-generation X-1s (including the X-1B, X-1D and X-1E), specifically designed to investigate dynamic stability at speeds in excess of Mach 2 and altitudes greater than 90,000 feet. It was a mid-wing monoplane with retractable tricycle landing gear. The airplane was 35 feet, 6.58 inches (10.835 meters) long with a wingspan of 30 feet, 6 inches (9.296 meters) and overall height of 10 feet, 2.37 inches (3.261 meters). The wheelbase, measured from the nose wheel axle to the main wheel axle, was  13 feet, 5.13 inches. (4.093 meters). The main wheel tread was 4 feet, 3 inches (1.295 meters). The X-1A design gross weight was 10,668 pounds (4,839 kilograms).

The X-1A was powered by a single Reaction Motors XLR11-RM-5 rocket engine with four independent combustion chambers. The XLR11 was fueled with ethyl alcohol and liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons).

The Bell X-1A made its first flight 14 February 1953 with Bell test pilot Jean Ziegler in the cockpit. It reached its highest speed, Mach 2.44 on Flight 10. Its highest altitude was 90,440 feet (27,566 meters) on its 24th flight. On 8 August 1955, while still on board its B-50 drop ship, the X-1A suffered an external explosion. The rocketplane was jettisoned and destroyed when it hit the desert floor.

© 2016, Bryan R. Swopes

11 December 1951

Test pilot William R. Murray at the control of Kaman K-225, Bu. No. 125477, with a Boeing 502-2 gas turbine engine installed. (U.S. Navy)

11 December 1951: The first helicopter powered by a gas turbine engine made its first flight at the Kaman Aircraft Company plant at Bloomfield, Connecticut. Using a K-225 tandem rotor helicopter delivered to the U.S. Navy in 1949, Bureau of Aeronautics serial number (“Bu. No.”) 125477, Kaman replaced the 220 horsepower Lycoming O-435-A2 reciprocating engine with a Boeing 502-2E turboshaft engine. This engine could produce 175 continuous horsepower at 2,900 r.p.m. at Sea Level, less than the piston engine it replaced, but it also weighed considerably less.

K-225 Bu. No. 125477 was the first helicopter to perform an intentional loop, when it was delivered to the Navy at NATC Patuxent River by factory test pilot William R. Murray. It was placed in storage at Bradley Field, Windsor Locks, Connecticut until 1957. The gas turbine had been removed. When the helicopter was transferred to the Smithsonian Institution in 1957, a similar-appearing Boeing YT-50-BO-2 gas turbine engine was installed.

The K-225 was a two-place, single-engine helicopter using Kaman’s unique system of counter-rotating, intermeshing rotors (“synchropter”). Each rotor cancelled the torque reaction of the other, eliminating the need for a tail rotor. In a conventional single-rotor helicopter, up to 30% of the engine power is required to drive the tail rotor. With the counter-rotating design, the total engine power is available for lift and thrust.

K-225 Bu. No. 125477 is 22 feet, 5 inches (6.83 meters) long. Each rotor has a diameter of 38 feet (11.58 meters). It stands 11 feet, 6 inches (3.51 meters) high. The helicopter has an empty weight of 1,800 pounds (816 kilograms) and a maximum gross weight of 2,700 pounds (1,225 kilograms). It is a slow helicopter, with a never-exceed (VNE) limit of 70 miles per hour (112.7 kilometers per hour). This historic helicopter is on display at the Smithsonian Institution National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Virginia.

Kaman K-225, Bu. No. 125477, the first gas turbine-powered helicopter, at the Vertical Flight Gallery, Steven F. Udvar-Hazy Center, Smithsonian Institution National Air and Space Museum, Chantilly, Virginia. (NASM)
Kaman K-225, Bu. No. 125477, the first gas turbine-powered helicopter, at the Vertical Flight Gallery, Steven F. Udvar-Hazy Center, Smithsonian Institution National Air and Space Museum, Chantilly, Virginia. (NASM)

© 2016, Bryan R. Swopes