Tag Archives: Test Pilot

22 November 1961

Lieutenant Colonel Robert Bradford Robinson, Jr., U.S. Marine Corps, with the McDonnell YF4H-1 Phantom II, Bu. No. 142260, with which he set a world absolute speed record, 22 November 1961. Colonel Robinson is wearing a Goodrich Mark IV full-pressure suit for protection at high altitudes. (U.S. Navy)

22 November 1961: In recognition of the 50th Anniversary of Naval Aviation, a number of speed and altitude record attempts were planned, using the U.S. Navy’s new McDonnell YF4H-1 Phantom II fighter. On the morning of 22 November, Lieutenant Colonel Robert Bradford Robinson, Jr., United States Marine Corps, took off from Edwards Air Force Base on Operation Skyburner, an attempt to set a new World Absolute Speed Record. He was flying the second Phantom II built, Bu. No. 142260.

The Phantom carried three external fuel tanks for this flight. It had a 600-gallon (2,271.25 liter) centerline tank and two 370-gallon (1,400.6 liter) wing tanks. Robinson flew southeast toward NAS El Centro, then turned back to the northwest. Over the Salton Sea, he began to accelerate the YF4H-1 to build up speed for the record run over a measured twenty-mile course back at Edwards AFB. The Phantom’s two General Electric J79-GE-3A afterburning turbojets used a tremendous amount of fuel at full throttle and the centerline fuel tank was quickly emptied. Robinson jettisoned the empty tank over the Chocolate Mountain gunnery range. Continuing to accelerate, the two wing tanks were next jettisoned as they ran dry, this time at Bristol Dry Lake.

McDonnell YF4H-1 Phantom II, Bu. No. 142260, during Operation Skyburner, 22 November 1961. (U.S. Navy)

The Phantom entered the east end of the speed course in full afterburner. Having burned off more than 1,300 gallons of fuel, 142260 was much lighter now, and aerodynamically cleaner after dropping the external tanks. Robinson exited the west end of the 20-mile (32.2 kilometer) course in less than one minute.

Fédération Aéronautique Internationale rules require that a speed record must be made with two passes in opposite directions. The average speed of the two runs is the record speed. The Phantom was flying so fast that it covered another 105 miles (169 kilometers) before it could turn around. During the turn, it was still traveling at 0.9 Mach.

Robinson again put the engines in afterburner as he approached the course from the west. On the second run, the fighter was even lighter and its recorded speed was more than 1,700 miles per hour (2,736 kilometers per hour). The average of the two runs was calculated at 2,585.425 kilometers per hour (1,606.509 miles per hour.) This was the new FAI Absolute World Speed Record.¹

For his accomplishment, Lieutenant Colonel Robinson was awarded the Distinguished Flying Cross by Secretary of the Navy John B. Connally. The presentation took place on 25 November 1961 at Newport News, Virginia, during the commissioning of USS Enterprise CVA(N)-65.

McDonnell YF4H-1 Phantom II Bu. No. 142260 during Operation Skyburner, 1961. (U.S. Navy via FFRC Photo Collection)

In the next few weeks, the same YF4H-1 would establish a world record for sustained altitude—20,252 meters (66,444 feet).² Two years earlier, 6 December 1959, in Operation Top Flight, 142260 had established a world record for absolute altitude when it zoom-climbed to 98,557 feet (30,040 meters).³

Lieutenant Colonel Robert B. Robinson, Jr., U.S. Marine Corps, with the McDonnell YF4H-1 Phantom II Bu. No. 142260, with which he set a world absolute speed record, 22 November 1961. (U.S. Navy)

Robert Bradford Robinson, Jr., was born at Orange, California, 22 October 1923. He was the second of four children of Robert Bradford Robinson, a U.S. Postal Service mail carrier, and Golda Leutha Nordeen Robinson.

Robert B. Robinson. (Orange and White 1941)

Bob Robinson attended Orange Union High School, graduating in 1941. He participated in all varsity sports, and was selected to attend the Boys’ State leadership program. He earned a bachelor of science degree at Washington University, St. Louis, Missouri.

Robinson entered the United States Marine Corps on 26 August 1942. He received the wings of a Naval Aviator and was commissioned as a second lieutenant on 1 December 1943.

2nd Lieutenant Robinson married Miss Lavonne Jean David at Nueces, Texas, 23 December 1943. They would later have a son, Robert Bradford Robinson III (and a grandson, Robert Bradford Robinson IV)

During the Battle of Okinawa, Lieutenant Robinson flew the radar-equipped Grumman F6F-3N Hellcat night fighter with VMF(N)-543.

A Grumman F6F-3N Hellcat night fighter of VMF(N)-543, circa 1944. The radome is at the far end of the airplane’s right wing. (U.S. Navy)

Lieutenant Robinson was promoted to the rank of first lieutenant, 31 March 1945. Following World War II, Lieutenant Robinson was assigned to VMF-311, and became one of the first Naval Aviators to qualify in turbojet-powered aircraft. The squadron initially flew the Lockheed TO-1 Shooting Star (P-80), and later transitioned to the Grumman F9F Panther.

A Lockheed TO-1 Shooting Star  Bu. No. 33822 (P-80C 47-219) of VMF-311, circa 1948. (NNAM.1996.488.163.012)

Lieutenant Robinson was promoted to the rank of captain 1 April 1950. VMF-311 was sent to the Korean war zone in November 1950, initially operating from Yokosuka Air Base in Japan. The squadron flew close air support missions in support of the amphibious assault of Inchon, and at the Battle of the Chosin Reservoir. Captain Robinson returned to night fighter operations when he joined Marine All-Weather Squadron 513 (VMF(N)-513) on 13 January 1951. The unit which was equipped with Grumman F7F-3N Tigercats and Chance Vought F4U-5N Corsairs.

Two Grumman F9F-2 Panthers of VMF-311 being refueled at K-3, Republic of South Korea, circa 1951. The aircraft closest to the camera is an F9F-2B, Bu. No. 123602. (Department of Defense HD-SN-99-03071)

Captain Robinson was promoted to the rank of major, 31 December 1954. He completed the six-month course at the Naval Test Pilot School, NAS Patuxent River, Maryland, graduating in March 1959 (Class 21).

In 1963, Lieutenant Colonel Robinson retired from the Marine Corps after 20 years’ service. He was then employed as a test pilot for the McDonnell Aircraft Corporation at St. Louis, Missouri. He remained with the company for 30 years.

Mrs. Robinson died 7 February 1997, after 53 years of marriage. Bob Robinson later married Mrs. Julian Brady (née Elizabeth Catchings), the widow of a long-time friend.

Robert Bradford Robinson, Jr., died 28 September 2005 at McComb, Mississippi. He was buried at the Hollywood Cemetery in McComb.

¹ FAI Record File Number 9060

² FAI Record File Number 8535

³ FAI Record File Number 10352

© 2018, Bryan R. Swopes

21 November 1947

Corky Meyer in the cockpit of the first Grumman XF9F-2 Panther, Bu. No. 122475, during the first flight, 21 November 1947. (U.S. Navy)
Corky Meyer in the cockpit of the first Grumman XF9F-2 Panther, Bu. No. 122475, during the first flight, 21 November 1947. (Grumman Aircraft Engineering Corporation)
Corwin H. ("Corky") Meyer
Corwin Henry Meyer, 1920–2011. (Grumman)

21 November 1947: Grumman Aircraft Engineering Corporation engineering test pilot Corwin Henry (“Corky”) Meyer took off from the company’s airfield at Bethpage, Long Island, New York, in the first prototype XF9F-2 Panther, Bu. No. 122475. After the preliminary flight evaluation, Meyer landed the new jet fighter on a longer runway at Idlewild Airport. The Bethpage runway was only 5,000 feet (1,524 meters) long. As the first jet aircraft built by Grumman, it wasn’t known if the XF9F-2 could land on that short a runway.

Air & Space/Smithsonian magazine quoted Meyer as saying that the weather was “the foulest of any first flight in my experience.” He described the prototype’s handling qualities: “It handled like a J-3 Cub.” In an article for Flight Journal, Corky Meyer wrote: “I conducted a very satisfactory first flight of the 5,000-pound-thrust Rolls-Royce Nene-powered fighter on November 21, 1947.”

Grumman XF9F-2 prototype, photographed 20 November 1947. (Grumman Aircraft Engineering Corporation)

The XF9F-2 Panther was the first jet-powered aircraft to be built by Grumman, a major supplier of aircraft for the United States Navy. It was a single-seat, single-engine, day fighter, designed for operation on the U.S. Navy’s aircraft carriers. It was developed from a proposed four-engine XF9F-1 night fighter. Grumman planned to use the Rolls-Royce RB.41 Nene centrifugal-flow turbojet engine. With 5,000 pounds rated thrust at 12,400 r.p.m., the Nene was more powerful (and more reliable) than any engine manufactured by an American company.

The first prototype Grumman XF9F-2 Panther at Grumman's Plant 4, 1947. (Grumman Aircraft Engineering Corporation)
The first prototype Grumman XF9F-2 Panther at Grumman’s Plant 4, 1947. (Grumman Aircraft Engineering Corporation)

The Nene was licensed for production in the United States to the Taylor Turbine Corporation as the J42-TT-2. No J42s were ready, so Taylor supplied Grumman with imported Rolls-Royce engines. The Navy had concerns about Taylor’s capability to produce engine in sufficient quantities and arranged for the J42 license to be sold to Pratt & Whitney.

Ensign Neil A. Armstrong, as wingman to Lieutenant (j.g.) Ernie Moore, is flying the second Grumman F9F-2 Panther, Bu. No. 125122 (marked S 116), assigned to VF-51, USS Essex (CV-9), 1951. (Naval Aviation Museum)
Ensign Neil A. Armstrong, as wingman to Lieutenant (j.g.) George Russell, is flying the second Grumman F9F-2 Panther, Bu. No. 125122 (marked S 116), assigned to VF-51, USS Essex (CV-9), 1951. (John Moore/Naval Museum of Naval Aviation)

The Panther was placed into production as the F9F-2. The F9F-2 was 37 feet, 5-3/8 inches (11.414 meters) long with a wingspan of 38 feet, 5⅜ inches (11.719 meters) long, with a wingspan of 38 feet, 0 inches (11.528 meters)—not including wing tanks. Its overall height was 11 feet, 4 inches (3.454 meters). The wings could be hydraulically folded to reduce the span for storage aboard ship. The Panther weighed 9,303 pounds (4,220 kilograms) empty, and had a gross weight of 19,494 pounds (8,842 kilograms.

Grumman F9F-5 Panther, Bu. No. 126034, of VF-781, catches an arresting cable when landing aboard USS Oriskany (CVA-34), 1952. (U.S. Navy)
Grumman F9F-5 Panther, Bu. No. 126034, of VF-781, catches an arresting cable when landing aboard USS Oriskany (CVA-34), 15 November 1952. (U.S. Navy)

The F9F-2 was powered by a Pratt & Whitney JT6 (J42-P-8) turbojet engine which produced 5,000 pounds of thrust (22.241 kilonewtons) at Sea Level, and 5,750 pounds (25.577 kilonewtons) with afterburner. The J42 was a license-built version of the Rolls-Royce Nene. The engine used a single-stage centrifugal-flow compressor, 9 combustion chambers and a single-stage axial-flow turbine. The J42-P-8 weighed 1,715 pounds (778 kilograms).

The Panther had a maximum speed of 575 miles per hour (925 kilometers per hour) at Sea Level. Its service ceiling was 44,600 feet (13,594 meters), and the range was 1,353 miles (2,177 kilometers).

The Panther was armed with four M3 20 mm autocannon placed in the nose with 760 rounds of ammunition. It could carry up to 3,000 pounds (1,361 kilograms) of bombs or eight 5-inch (12.7 centimeters) rockets on four hardpoints under each wing.

Lt. Royce Williams, USN, points out battle damage to his Grumman F9F-5 Panther, aboard USS Oriskany (CVA-34), 18 November 1952. (U.S. Navy)
Lt. Royce Williams, USN, points out battle damage to his Grumman F9F-5 Panther, Bu. No. 125459, aboard USS Oriskany (CVA-34), 18 November 1952. (U.S. Navy via Flight Journal)

It was a very successful air-to-air and air-to-ground fighter during the Korean War. On 18 November 1952, Lieutenant Elmer Royce Williams, USN, flying an F9F-5 Panther, Bu. No. 125459, of VF-781 aboard the aircraft carrier USS Oriskany (CVA-34), shot down four of seven Soviet Air Force MiG 15 fighters which had launched from Vladivostok toward Task Force 77. His Panther sustained significant damage from enemy cannon shells. Though he safely returned to his carrier, the fighter, Number 106, was so badly damaged that it was pushed over the side. Lieutenant Williams was awarded the Silver Star for this action. No other pilot has ever shot down four MiG fighters during a single combat action.

This Grumman F9F-5 Panther aboard the USS Midway Museum, San Diego, California, is painted to represent Royce Williams' fighter. (USS Midway Museum)
This Grumman F9F-5 Panther aboard the USS Midway Museum, San Diego, California, is painted to represent Royce Williams’ fighter. (USS Midway Museum)

The F9F Panther was flown during the Korean War by such famed naval aviators as Ted Williams, and future astronauts John Glenn and Neil Armstrong.

Grumman built 1,358 F9F-2,-3,-4 and -5 Panthers and another 1,392 swept wing F9F-6, -7 and -8 Cougars. Panthers remained in service with the United States Navy until 1958, and Cougars until 1974.

The combat survivability of Grumman's fighters earne dteh factory the nickname of "The Grumman Iron Works". In this photograph, future NASA astronaut John H. Glenn, the first American to orbit the Earth, examines some of the 714 holes in his F9F Panther. (U.S. Navy)
The combat survivability of Grumman’s fighters earned the factory the nickname of “The Grumman Iron Works.” In this photograph, future NASA astronaut Major John H. Glenn, U.S. Marine Corps, the first American to orbit the Earth, examines some of the 714 holes in his F9F Panther. (U.S. Navy)

Corwin Henry (“Corky”) Meyer ¹ was born 14 April 1920 at Springfield, Illinois. He was the second of three children of Dr. John Gerhard Meyer, a physician and surgeon, and Betsy Arenia Corwin Meyer.

Corwin H. Meyer, 1938. (Capitoline)

At the age of 17 years, Corky Meyer learned to fly in the Civilian Pilot Training Program. (This was a federal government-funded program which provided 72 hours of ground school and 35–50 hours of flight training, intended to increase the number of pilots available for civilian aviation.)

Meyer attended Springfield High School, in Springfield. He was a member of the Senior Boys’ Council and the National Honor Society. Meyer graduated from high school in May 1938, then entered the University of Illinois. He studied at the at the Massachusetts Institute of Technology (M.I.T.), Cambridge, Massachusetts, 1942–43.

Meyer was a pilot trainee for Pan American Airways before being employed as an engineering test pilot at the Grumman Aircraft Engineering Corporation at Bethpage, New York.

A flight crew boards a Grumman TBF Avenger torpedo bomber, circa early 1942. (Rudy Arnold Collection, Smithsonian Institution, National Air and Space Museum NASM-XRA-0780)

Meyer’s first project was testing newly-built TBF Avenger torpedo bombers. Later he was was a project test pilot for the F6F Hellcat, F8F Bearcat and F7F Tigercat. (Robert Leicester Hall made the first flights of these airplanes, but Corky Meyer was involved in flight testing of each of them early on.)

Grumman F6F-3 Hellcat, Bu. No. 26108, Long Island, New York, circa 1942. The pilot standing by the airplane may be Corky Meyer. (Rudy Arnold Collection, Smithsonian Institution, National Air and Space Museum NASM-XRA-0648)

Corwin H. Meyer married Miss Dorothy Marjorie Fyfield, 7 April 1945, at Huntington, New York. They would have a daughter, Sandra Louise Meyer, born in 1950, and two sons, John Fyfield Meyer and Peter Meyer.

Grumman F8F-2 Bearcat, Bu. No. 121718. The pilot may be Corky Meyer. (Grumman)

On 19 May 1952, Corky Meyer took the prototype variable-wing-sweep XF10F-1 Jaguar for its first flight at Edwards Air Force Base, California.

Grumman XF10F-1 Jaguar, 1952.

From 1952 to 1954, Meyer was head of Grumman’s flight operations at Edwards Air Force Base in California. In 1954, he became the first civilian airplane pilot to qualify for flight operations aboard U.S. Navy aircraft carriers, when he flew an F9F-6 Cougar to USS Lake Champlain (CVA-39). ²

Grumman XF9F-9 prototype, Bu. No. 138604. (Grumman)

Corky Meyer made the first flight of the XF9F-9 prototype, Bu. No. 138604, on 30 July 1954, and was able to approach mach 1 in level flight. The XF9F-9 was a completely redesigned F9F Cougar, which incorporated the “wasp-waist” in its area-ruled fuselage. The following year, this type would be redesignated the F11F Tiger.

In 1967, Meyer was appointed  vice president of Grumman, and in 1968, he was elected to the board of directors of the Grumman Aerospace Corporation. He became the senior  vice president of Grumman Aerospace in 1972. In 1974, Meyer became President of Grumman American Aviation Corp., Savannah, Georgia, a subsidiary which produced light civil airplanes, the Grumman AgCat, and the Gulfstream line of executive jets. Corwin Meyer retired from Grumman in 1978. He later served as chief executive officer of the Enstrom Helicopter Corporation and the Falcon Jet Corporation.

A Grumman C-20B Gulfstream III, 86-0200, in service with the 89th Airlift Wing, U.S. Air Force.
Corwin Henry Meyer

Meyer was an early member of the Society of Experimental Test Pilots. In 1971, he was awarded SETP’s James H Doolittle Award for excellence in technical management or engineering achievement in aerospace technology. In 1999 the National Aeronautic Association selected him for its Elder Statesman Award.

Meyer was the author of Corky Meyer’s Flight Journal, an autobiography published in 2005, by Specialty Press, North Branch, Minnesota.

Corwin Henry Meyer died in Naples, Florida, 1 June 2011, at the age of 91 years.

¹ Lutheran Church birth and baptismal records give Meyer’s name as “Henry Corwin Meyer.”

² On 3 April 1991, TDiA’s author became the only civilian helicopter pilot (at that time, and who was not a former military pilot) to qualify to fly from U.S. Navy warships at sea. The Deck Landing Qualification (DLQ) flights were evaluated by instructors from Helicopter Antisubmarine (Light) Squadron (HSL-31) aboard USS Kincaide (DDG-965), a Spruance-class guided missile destroyer.

© 2018, Bryan R. Swopes

20 November 1940

North American Aviation's NA-73X fighter prototype, engine idling, with Vance Breese in the cockpit at Mines Field, Los Angeles, 26 October 1941. (North American Aviation Inc.)
North American Aviation’s NA-73X fighter prototype, engine idling, with Vance Breese in the cockpit at Mines Field, Los Angeles, 26 October 1940. (North American Aviation Inc.)

20 November 1940: North American Aviation’s Chief Test Pilot, Paul Baird Balfour, made his first flight in the NA-73X, NX19998, prototype for a Royal Air Force fighter, the Mustang Mk.I.

Vance Breese was the free-lance test pilot who made the first seven flights in the new airplane. Breese claimed to have made a bet with North American executives that Balfour would crash the prototype on his first flight.

Paul B. Balfour (1908–1951). This is Balfour’s NAA employee file card. (North American Aviation Inc.)

This flight was scheduled to be a high speed test. Edgar Schmued, the designer, offered to show Balfour around the airplane. “Before this flight, I asked Balfour to get into the airplane and go through the routine of a takeoff and flight. He responded that one airplane is like another and he would not need the routine checkout.”

The ground crew started the NA-73X’s 1,150 horsepower Allison V-1710-39 liquid-cooled V-12 engine at 5:40 a.m. and let it warm up to normal operating temperature. When it was restarted just prior to Paul Balfour’s flight, “it was a little hard to start,” according to Olaf Anderson, the airplane’s mechanic.

The prototype Mustang, NA-73X, lies upside down in a plowed field, 20 November 1941. (North American Aviation Inc.)
The prototype Mustang, NA-73X, lies upside down in a plowed field, 20 November 1940. (North American Aviation Inc.)

Balfour took off from Mines Field at about 7:10 a.m. After about twelve minutes of flight, the Allison stopped running. Balfour was too far from Mines Field to make it back to the runway. He landed in a plowed field west of Lincoln Boulevard. When the tires hit the soft surface, the prototype flipped over. Balfour was not hurt and was able to crawl out of the upside-down wreck.

The Civil Aeronautics Board report described the damage as “engine housing broken, both wingtips damaged, tail surfaces damaged, top of fuselage damaged, and other miscellaneous damage.” The NA-73X had accumulated just 3 hours, 20 minutes of flight.

Vance Breese won his bet.

Paul Balfour was not injured in the crash landing, but the NA-73X prototype was significantly damaged. (North American Aviation Inc.)
Paul Balfour was not injured in the crash landing, but the NA-73X prototype was significantly damaged. (North American Aviation Inc.)

According to the C.A.B. investigation, the engine had stopped due to fuel starvation when Balfour neglected to select another tank.

The prototype was taken back to the factory and rebuilt. It would become the famous Mustang, one of the most significant aircraft of World War II.

Damage to the wingtips, tail surfaces, fuselage. (North American Aviation Inc.)
Damage to the wingtips, tail surfaces, fuselage. (North American Aviation Inc.)

Robert C. Chilton was hired as the new Chief Test Pilot. He would continue testing the Mustang developments throughout the war. Chilton made his first flight in NA-73X on 3 April 1941.

The Mustang prototype was hoisted out of the plowed field and taken back to the factory where it was rebuilt. (North American Aviation Inc.)
The Mustang prototype was hoisted out of the plowed field and taken back to the factory where it was rebuilt. (North American Aviation Inc.)

Paul Balfour continued to work for North American Aviation, testing the NA-40 and NA-40B prototypes and the B-25 Mitchell medium bomber. He later served in the United States Air Force.

Paul Baird Balfour was born 5 July 1908 in Washington State. He was the son of Fred Patrick Balfour and Edna May Baird Balfour. Balfour attended two years of college.

Paul Balfour entered the U.S. Army Air Corps (prior to 1930). He was stationed at Rockwell Field, San Diego, California.

Balfour married Martha Lillette Cushman of Coronado, California, at Yuma, Arizona, 6 June 1930.

Balfour began working as a test pilot for North American Aviation, Inc., 1 March 1936.

On 2 July 1938, he married Lois Tresa Watchman at Kingman, Arizona. They would have two children.

Paul B. Balfour, center, with a North American Aviation B-25 Mitchell medium bomber. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Paul B. Balfour, center, with a North American Aviation B-25 Mitchell medium bomber. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

On 9 November 1951, Major Paul B. Balfour, U.S. Air Force, attached to the 1002nd Inspector General Group at Norton Air Force Base, California, was flying a North American VB-25J, 44-30955, a transport conversion of a B-25J-30-NC Mitchell medium bomber.

Shortly after takeoff, at about 10:00 a.m., the airplane developed engine trouble. Unable to return to Norton, Balfour attempted a belly landing at a small private airfield. Witness saw that the airplane’s left engine was idling, and its propeller was feathered. As he approached, the airplane was blocked by a windbreak of eucalyptus trees bordering U.S. Route 66. Balfour banked away from the trees but the B-25 crashed in an orange grove along Bloomington Avenue in Rialto, approximately 7 miles (11 kilometers) west of Norton.

Balfour, still buckled in his seat, was thrown clear of the burning wreck and landed in the street. One man on board was killed and two others seriously injured. Balfour died in a hospital three hours later. He was 41 years old. Major Balfour was buried at the Inglewood Park Cemetery, Inglewood, California.

Burning wing of North American VB-25J 44-30955, near Rialto, California, 9 November 1951.
Burning wing of North American VB-25J 44-30955, near Rialto, California, 9 November 1951.

© 2016, Bryan R. Swopes

18 November 1966

Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)
Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)

18 November 1966: On Flight 175 of the research program, Major William J. (“Pete”) Knight, U.S. Air Force, flew the newly-modified North American Aviation X-15A-2, 56-6671, to Mach 6.33 (4,261 miles per hour/6,857 kilometers per hour) at 98,900 feet (30,245 meters). This is just 11 years, to the day, since Pete Everest made the first powered flight in the Bell Aircraft Corporation X-2 rocketplane, with more than 6 times an increase in speed.

On this date, NASA made an attempt to launch two X-15s, -671 and -672, using the NB-52A 52-003 and NB-52B 52-008. However -672, the number three ship, had to abort the mission.

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)

Balls 8, the NB-52B, flown by NASA test pilot Fitz Fulton and Colonel Joe Cotton, USAF, carried 56-6671 to the launch point over Mud Lake, Nevada, approximately 200 miles to the north of Edwards AFB. (This was the lake where -671 was severely damaged in an emergency landing, 9 November 1962. It was returned to North American to be rebuilt to the X-15A-2 configuration and returned to flight operation 19 months later.)

At 1:24:07.2 p.m. local time, Pete Knight and the X-15 were dropped from the pylon under the right wing of the B-52. He ignited the Reaction Motors XLR99-RM-1 and began to accelerate with its 57,000 pounds of thrust (253.549 kilonewtons).

Since this was to be a high temperature test flight, it was planned to fly no higher than 100,000 feet (30,480 meters). The denser atmosphere would result in greater aerodynamic heating of the rocketplane.

With the two external propellant tanks carrying an additional 1,800 gallons (6,814 liters) of liquid ammonia and liquid oxygen, the engine ran for 2 minutes, 16.4 seconds. The rocketplane had accelerated to Mach 2. The external tanks emptied in about 60 seconds and were jettisoned. The tanks were equipped with parachutes. They were recovered to be reused on later flights.

The X-15, now about 25,000 pounds (11,340 kilograms) lighter and without the aerodynamic drag of the tanks, continued to accelerate. At its highest speed, the rocketplane was travelling approximately 6,500 feet per second (1,981 meters per second), more than twice as fast as a high-powered rifle bullet. Its surface temperatures exceeded 1,200 °F. (649 °C.)

Knight landed the X-15 on Rogers Dry Lake at Edwards Air Force Base. The duration of this flight had been 8 minutes, 26.8 seconds.

The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)
The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)

© 2016, Bryan R. Swopes

18 November 1955

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)
Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

18 November 1955: Major Frank Kendall Everest, Jr., USAF, makes the first powered flight in the Bell X-2 research rocketplane, 46-674, at Edwards AFB, California. The rocketplane was airdropped from a Boeing EB-50D Superfortress, 48-096. Only one 5,000-lb. thrust rocket tube ignited, but that was enough to accelerate “Pete” Everest to Mach 0.992 (655.4 miles per hour/1,054.5 kilometers per hour) at 35,000 feet (10,668 meters).

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The Bell X-2 being loaded into the EB-50D Superfortress "mothership" at Edwards AFB, California. (LIFE Magazine)
The Bell X-2 being loaded into the EB-50D Superfortress “mothership” at Edwards AFB, California. (LIFE Magazine)

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)
The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)

Pete Everest joined the United States Army Air Corps shortly before the United States entered World War II. He graduated from pilot training in 1942 and was assigned as a P-40 Warhawk pilot, flying combat missions in North Africa, Sicily and Italy. He was credited with shooting down two German airplanes and damaging a third.

Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations where he shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war.

The Bell X-2 was dropped from a Boeing EB-50D Superfortress, 48-096. (U.S. Air Force)

After the war, Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California. At Edwards, he was involved in nearly every flight test program, flying the F-88, F-92, F-100, F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the X-1B to Mach 2.3, and he set a world speed record with the X-2 at Mach 2.9 (1,957 miles per hour, 3,149.5 kilometers per hour) which earned him the title, “The Fastest Man Alive.”

Pete Everest gives some technical advice to William Holden ("Major Lincoln Bond"), with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Pete Everest gives some technical advice to actor William Holden (“Major Lincoln Bond”), with Bell X-2 46-674, on the set of “Toward The Unknown,” 1956. (Toluca Productions)

Frank Everest returned to operational assignments and commanded a fighter squadron, two combat crew training wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base. In 1965, Pete Everest was promoted to the rank of brigadier general. He was commander of the Aerospace Rescue and Recovery Service. He retired from the Air Force in 1973 after 33 years of service. General Everest died in 2004.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)

© 2016, Bryan R. Swopes