Tag Archives: Test Pilot

3 February 1995: 05:22:03.994 UTC

Space Shuttle Discovery (STS-63) lifts off from Launch Complex 39B, Kennedy Space Center, 05:22:04 UTC, 3 February 1995. (NASA)

3 February 1995: At 12:22:03.994 a.m., Eastern Standard Time, Space Shuttle Discovery (OV-103) lifted off from Launch Complex 39B at the Kennedy Space Center, Cape Canaveral, Florida. The mission, STS-63, was a rendezvous with the Russian space station, Mir.

Commander James Donald Wetherbee, United States Navy, on his second space flight, was the mission commander. Lieutenant Colonel Eileen Marie Collins, United States Air Force, on her first space flight, was Discovery’s pilot. This was the first time in the NASA Space Shuttle Program that a woman had been assigned as pilot of a space shuttle.

Astronaut Eileen Collins aboard Discovery (STS-63). (NASA)

Also on board were Mission Specialists Bernard Anthony Harris, Jr., M.D.; Colin Michael Foale, Ph.D.; Janice Elaine Voss, Sc.D.; and Colonel Vladimir Georgiyevich Titov, Russian Air Force, of the Roscosmos State Corporation for Space Activities.

Flight crew of Space Shuttle Discovery, Mission STS-63. Seated, left to right: Janice Elaine Voss, Sc.D., Mission Specialist; Lieutenant Colonel Eileen Marie Collins, U.S. Air Force, Pilot; Commander James Donald Weatherbee, U.S. Navy, Mission Commander; Colonel Vladimir Georgiyevich Titov, Russian Air Force, Cosmonaut. Standing, Dr. Bernard Anthony Harris, Jr., M.D., Mission Spcialist; C. Michael Foale, Mission Spcialist. (NASA MSFC-9414225)

The primary purpose of the mission was to conduct a close approach and fly-around of Mir to demonstrate techniques prior to an actual docking, scheduled for a later flight. A number of scientific experiments and a space walk were carried out by the crew.

Space Station Mir imaged from Space Shuttle Discovery during Mission STS-63. Souz TM-20 is docked with the space station. (NASA)

Discovery landed at the Kennedy Space Shuttle Landing Facility at 11:50:19 UTC, 11 February, after completing 129 orbits. The total mission duration was 8 days, 6 hours, 28 minutes, 15 seconds.

Eileen Collins was born at Elmira, New York, 19 November 1956, a daughter of Irish immigrants to the United States of America. She graduated from high school in 1974 then attended Corning Community College, Corning, New York, where she earned an associate’s degree in Mathematics and Science, 1976. She went on to Syracuse University at Syracuse, New York, graduating in 1978 with a Bachelor of Arts (B.A.) degree in math and exonomics. In 1986 Collins earned a master of science degree in Operations Research from Stanford University, and three years later, received a second master’s degree in Space Systems Management from Webster University.

2nd Lieutenant Eileen M. Collins, USAF, with a Northrop T-38A Talon trainer at Vance AFB, September 1979. (U.S. Air Force)

Eileen Collins had expressed an interest in aviation and space flight from an early age. After graduating from Syracuse University, she was one of four women selected to attend U.S. Air Force pilot training at Vance Air Force Base, Oklahoma. She graduated in 1979, earning her pilot’s wings and was commissioned as a second lieutenant. She remained at Vance AFB as a pilot instructor, flying the Northrop T-38A Talon supersonic trainer.

Collins was next sent for pilot transition training in the Lockheed C-141 Starlifter, a four-engine transport. She served as a pilot at Travis Air Force Base, California.

From 1986–1989, Captain Collins was assigned as Assistant Professor in Mathematics at the U.S. Air Force Academy, Colorado Springs, Colorado. Next, she became only the second woman to attend the Air Force Test Pilot School at Edwards Air Force Base, graduating with Class 89B.

Major Eileen M. Collins, U.S. Air Force, with McDonnell F-4E-31-MC Phantom II 66-0289, at Edwards AFB, 1990. (U.S. Air Force)
Major Eileen M. Collins, U.S. Air Force, with McDonnell F-4E-31-MC Phantom II 66-0289, at Edwards AFB, 1990. (U.S. Air Force)
Eileen Collins (Irish America Magazine)

In 1990, Major Collins was accepted for the NASA astronaut program, and was selected as an astronaut in 1992.

Eileen Marie Collins was awarded the Harmon Trophy for her flight aboard Discovery (STS-63). In 1997, she flew as pilot for Atlantis (STS-84). She commanded Columbia (STS-93) in 1999, and Discovery (STS-114) in 2005.

Colonel Collins retired from the Air Force in January 2005, and from NASA in May 2006. With a remarkable record of four shuttle flights, she has logged 38 days, 8 hours, 10 minutes of space flight. During her career, she flew more than 30 aircraft types, and logged a total of 6,751 hours.

Colonel Eileen M. Collins, U.S. Air Force, NASA Astronaut. (Annie Liebovitz)
Colonel Eileen M. Collins, U.S. Air Force, NASA Astronaut. (Annie Liebovitz)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

3 February 1943

Test pilot Robert C. Chilton stand on the wing of a North American Aviation P-51B Mustang. (North American Aviation)
Test pilot Robert C. Chilton stands on the wing of a North American Aviation P-51B-10-NA Mustang, 42-106435. (North American Aviation, Inc.)

3 February 1943: North American Aviation test pilot Robert C. Chilton made the first flight of the first production P-51A Mustang, P-51A-1-NA, serial number 43-6003. A Model NA-99, the Mustang had manufacturer’s serial number 99-22106. This airplane was one of 1,200 which had been ordered by the United States Army Air Corps on 23 June 1942. (With the introduction of the Merlin-powered P-51B, the number of P-51A Mustangs was reduced to 310.)

The first production P-51A, 43-6006, shown with skis for winter operations testing. (U.S. Air Force)
The first production P-51A, 43-6003, shown with skis for winter operations testing. (U.S. Air Force)

The Mustang had been designed and built by North American Aviation, Inc., as a fighter for the Royal Air Force. Two Mustang Mk.I airplanes, the fourth and the tenth from the RAF production line, had been given to the Air Corps for evaluation and designated XP-51, serial numbers 41-038 and 41-039. Prior to this, the Air Corps had ordered 150 P-51 fighters, but these were Mustang Mk.I models to be turned over to England under Lend-Lease.

43-6003 was used for testing and was equipped with skis for takeoff and landing tests in New Hampshire and Alaska.

The second production North American Aviation P-51A-NA Mustang, 43-6004, (99-22107) was used for high-speed testing. It was called Slick Chick. (U.S. Air Force)

The North American Aviation P-51A Mustang was a single-seat, single-engine, long-range fighter. It is a low-wing monoplane with retractable landing gear and is of all-metal construction. It was 32 feet, 2½ inches (9.817 meters) long with a wingspan of 37 feet, ¼-inch (11.284 meters) and a height of 12 feet, 2-½ inches (3.721 meters) high. It had an empty weight of 6,451 pounds (2,926 kilograms) and gross weight of 8,000 pounds (3,629 kilograms).

The third production North American Aviation P-51A Mustang, 43-6005. (North American)
The third production North American Aviation P-51A-1-NA Mustang, 43-6005 (99-22108). (North American Aviation, Inc.)

The P-51A was powered by a right-hand tractor, liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F20R (V-1710-81) single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The V-1710-81 had a Maximum Continuous Power rating of 870 horsepower at 2,600 r.p.m., at Sea Level, and 1,000 horsepower at 2,600 r.p.m. at 14,400 feet (4,389 meters). It was rated at 1,200 horsepower at 3,000 r.p.m. for takeoff. The Military Power rating was 1,125 horsepower at 3,000 r.p.m., to an altitude of 14,600 feet (4,450 meters). War Emergency Power was 1,480 horsepower. The engine drove a 10 foot, 9 inch (3.277 meter) diameter, three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The engine was 7 feet, 1.87 inches (2.181 meters) long, 3 feet, 0.75 inches (0.933 meters) high and 2 feet, 5.28 inches (0.744 meters) wide. It weighed 1,352 pounds (613 kilograms).

Allison-engined P-51A-1-NA Mustang 43-6008. (99-22111). (NASA Langley Research Center Vintage Photographs Collection)

Maximum speed of the P-51A in level flight was 415 miles per hour (668 kilometers per hour) at 10,400 feet (3,170 meters) at War Emergency Power. It could climb to 20,000 feet (6,096 meters) in 7 minutes, 3.6 seconds, and to 30,000 feet (9,144 meters) in 15 minutes, 4.8 seconds. Its service ceiling was 35,100 feet (10,699 meters) and the absolute ceiling was 36,000 feet (10,973 meters). Maximum range on internal fuel was 750 miles (1,207 kilometers).

The P-51A was armed with four Browning AN-M2 .50-caliber machine guns, with two mounted in each wing. The inner guns had 350 rounds of ammunition, each, and the outer guns had 280 rounds per gun.

Of the 1,200 P-51A Mustangs ordered by the Army Air Corps, 310 were delivered. The order was changed to the Packard V-1650 Merlin-powered P-51B Mustang.

The fourth production airplane, North American Aviation P-51A-1-NA Mustang 43-6006. This Mustang crashed in Alsaka in 1944 an dwas recovered in 1977, then restored. It has FAA registration N51Z. (Kogo via Wikipedia)
The fourth production airplane, North American Aviation P-51A-1-NA Mustang 43-6006. This Mustang crashed in Alaska in 1944 and was recovered in 1977, then restored. It has FAA registration N51Z. (Kogo)

Robert Creed Chilton was born 6 February 1912 at Eugene, Oregon, the third of five children of Leo Wesley Chilton, a physician, and Edith Gertrude Gray. He attended Boise High School in Idaho, graduating in 1931. Chilton participated in football, track and basketball, and also competed in the state music contest. After high school, Chilton attended the University of Oregon where he was a member of the Sigma Chi fraternity (ΣΧ). He was also a member of the Reserve Officers Training Corps (ROTC).

Bob Chilton enlisted as an Aviation Cadet in the U.S. Army Air Corps, 25 June 1937. He was trained as a fighter pilot at Randolph Field and Kelly Field in Texas, and was commissioned as a Second Lieutenant in 1938. Lieutenant Chilton was assigned to fly the Curtiss P-36 Hawk with the 79th Pursuit Squadron, 20th Pursuit Group, at Barksdale Field, Louisiana. Because of a medical condition, he was released from active duty, 1 April 1939.

At some time prior to 1940, Bob Chilton, married his first wife, Catherine. They lived in Santa Maria, California, where he worked as a pilot at the local airport.

In January 1941, Chilton went to work as a production test pilot for North American Aviation, Inc., Inglewood, California. After just a few months, he was assigned to the NA-73X.

Chilton married his second wife, Betty W. Shoemaker, 15 November 1951.

On 10 April 1952, Bob Chilton returned to active duty with the U.S. Air Force, with the rank of lieutenant colonel. He served as Chief of the Republic F-84 and F-105 Weapons System Project Office, Air Material Command, at Wright-Patterson Air Force Base, Dayton, Ohio, until 9 March 1957.

From 1958, Chilton was a vice president for Horkey-Moore Associates, an engineering research and development company in Torrance, California, founded by former North American aerodynamacist Edward J. Horkey. In 1961, he followed Horkey to the Space Equipment Corporation, parent company of Thompson Industries and Kerr Products, also located in Torrance. Chilton served as corporate secretary and contracts administrator.

Chilton married his third wife, Wilhelmina E. Redding (Billie E. Johnson) at Los Angeles, 26 July 1964. They divorced in 1972.

In 1965, Bob Chilton returned to North American Aviation as a flight test program manager. He retired in 1977.

Robert Creed Chilton died at Eugene, Oregon, 31 December 1994, at the age of 82 years.

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

2 February 1974

General Dynamics YF-16 Fighting Falcon 72-1567, 2 February 1974. (U.S. Air Force)
General Dynamics YF-16 Fighting Falcon 72-1567, 2 February 1974. (U.S. Air Force)

2 February 1974: Test pilot Philip F. Oestricher made the first test flight of the General Dynamics YF-16 Light Weight Fighter prototype, 72-1567, at Edwards Air Force Base, California. During the 90-minute flight the airplane reached 400 knots (740.8 kilometers per hour) and 30,000 feet (9,144 meters).

Built at Fort Worth, Texas, the prototype rolled out 13 December 1973. It was loaded aboard a Lockheed C-5A Galaxy heavy-lift transport and was flown to Edwards. During high-speed taxi tests on 20 January 1974 the YF-16 began to oscillate in the roll axis, threatening to touch the wingtips to the ground.

Philip F. Oestricher, General Dynamics test pilot. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

To prevent damage, Phil Oestricher lifted off to regain control and after six minutes, touched down again.

The airplane had sustained damage to the right horizontal stabilizer. Engineers determined that the airplane’s roll control was too sensitive, and that the exhaust nozzle was improperly wired, resulting in too much thrust at low throttle settings. The YF-16 was repaired and was ready for its first test flight on 2 February.

A prototype YF-16 during a test flight, March 1973. Edwards Air Force Base is visible under the airplane's left wing. (Lockheed Martin)
The first prototype YF-16, 72-1567, during a test flight, March 1974. Edwards Air Force Base is visible under the airplane’s left wing. (Lockheed Martin)

The two YF-16 prototypes competed against the Northrop YF-17 for the role of the Air Force and NATO light weight fighter program. The YF-16 was selected and single-seat F-16A and two-seat F-16B fighters were ordered. The YF-17 was developed into the U.S. Navy’s F/A-18 Hornet.

Phil Oestricher in the cockpit of the first General Dynamics YF-16 Light Weight Fighter prototype at Carswell Air Force Base, Texas, December 1972.
Phil Oestricher in the cockpit of the first General Dynamics YF-16 Light Weight Fighter prototype at Carswell Air Force Base, Texas, December 1973. (Lockheed Martin)

The F-16 was designed to be a highly-maneuverable, light weight air superiority day fighter, but it has evolved into a multi-role fighter/fighter bomber with all weather attack capability.

The F-16 (now, a Lockheed Martin product) remains in production, with more than 4,500 having been built in the United States and under license in Europe. The United States Air Force has more than 1,200 F-16s in service.

A U.S. Air Force F-16C Block 50D Fighting Falcon, serial number 91-0405, of the 52nd Fighter Wing, Spangdahlem Air Base, Germany. This F-16 is armed with four AIM-120 air-to-air missiles and two air-to-ground AGM-88 High-speed Anti-Radiation Missiles (HARM). It carries external fuel tanks and an electronics countermeasures unit. (U.S. Air Force)
A U.S. Air Force F-16C Block 50D Fighting Falcon, serial number 91-0405, of the 52nd Fighter Wing, Spangdahlem Air Base, Germany. This F-16 is armed with four AIM-120 air-to-air missiles and two air-to-ground AGM-88 High-speed Anti-Radiation Missiles (HARM). It carries external fuel tanks and an electronics countermeasures unit. (U.S. Air Force)

The F-16C is a single-seat, single-engine Mach 2+ fighter. It is 49.3 feet (15.03 meters) long with a wingspan of 32.8 feet (10.0 meters) and overall height of 16.7 feet (5.09 meters). It has an empty weight of 20,300 pounds (9,207.9 kilograms) and maximum takeoff weight of 48,000 pounds (21,772 kilograms).

The fighter is powered by one Pratt & Whitney F100-PW-229 or General Electric F110-GE-129 afterburning turbofan engine which produces 17,800 pounds of thrust (79.178 kilonewtons) each, or 29,100 pounds (129.443 kilonewtons) with afterburner) (F100), or 29,500 pounds (131.223 kilonewtons) (F110).

General Dynamics/Lockheed Martin F-16C Block 30H Fighting Falcon 87-0292, 121st Fighter Squadron, 113th Operations Group, District of Columbia Air National Guard (Lockheed Martin)
Lockheed Martin F-16C Block 30H Fighting Falcon 87-0292, 121st Fighter Squadron, 113th Operations Group, District of Columbia Air National Guard (Lockheed Martin)

The Fighting Falcon has a maximum speed of Mach 1.2 (913 miles per hour, or 1,470 kilometers per hour) at Sea Level, and Mach 2+ at altitude. The fighter’s service ceiling is higher than 50,000 feet (15,240 meters). Maximum range is 2,002 miles (3,222 kilometers).

The F-16C is armed with one General Electric M61A1 Vulcan 20 mm 6-barreled Gatling gun with 511 rounds of ammunition, and can carry a wide range of air-to-air and air-to-ground missiles and bombs.

The first prototype YF-16, 72-1567, is now on display at the Virginia Air and Space Center, Hampton, Virginia.

The first of the two General Dynamics prototype YF-16 Fighting Falcon lightweight fighters, 72-1567, on display at the Virginia Air and Space Center, Hampton, Virginia. (Rtphokie via Wikipedia)
The first of the two General Dynamics prototype YF-16 Fighting Falcon lightweight fighters, 72-1567, on display at the Virginia Air and Space Center, Hampton, Virginia. (Rtphokie via Wikipedia)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

27 January 1939

Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum Archive)

27 January 1939: First Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, made the first flight of the prototype Lockheed XP-38 Lightning, serial number 37-457, at March Field, Riverside County, California.

This was a short flight. Immediately after takeoff, Kelsey felt severe vibrations in the airframe. Three of four flap support rods had failed, leaving the flaps unusable.

1st Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, 1937.

Returning to March Field, Kelsey landed at a very high speed with a 18° nose up angle. The tail dragged on the runway. Damage was minor and the problem was quickly solved.

Designed by an engineering team led by Hall L. Hibbard, which included the legendary Clarence L. “Kelly” Johnson, the XP-38 was a single-place, twin-engine fighter designed for very high speed and long range. It was an unusual configuration with the cockpit and armament in a center nacelle, with two longitudinal booms containing the engines and propellers, turbochargers, radiators and coolers. The Lightning was equipped with tricycle landing gear. The nose strut retracted into the center nacelle and the two main gear struts retracted into bays in the booms. To reduce drag, the sheet metal used butt joints with flush rivets.

The prototype had been built built at Lockheed’s factory in Burbank, California. On the night of 31 December 1938/1 January 1939, it was transported to March Field aboard a convoy of three trucks. Once there, the components were assembled by Lockheed technicians working under tight security.

Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Lockheed XP-38 Lightning 37-457

The XP-38 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 52 feet (15.850 meters) and overall height of 12 feet, 10 inches (3.952 meters). Its empty weight was 11,507 pounds (5,219.5 kilograms). The gross weight was 13,904 pounds (6,306.75 kilograms) and maximum takeoff weight was 15,416 pounds (6,992.6 kilograms).

The Lightning was the first production airplane to use the Harold Caminez-designed, liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710 single overhead cam 60° V-12 engines. When installed on the P-38, these engines rotated in opposite directions. The XP-38 used a pair of experimental C-series Allisons, with the port V-1710-C8 (V-1710-11) engine being a normal right-hand tractor configuration, while the starboard engine, the V-1710-C9 (V-1710-15), was a left-hand tractor. Through a 2:1 gear reduction, these engines drove the 11-foot (3.353 meters) diameter, three-bladed Curtiss Electric variable-pitch propellers inward to counteract the torque effect of the engines and propellers. (Viewed from the front of the airplane, the XP-38’s starboard propeller turned clockwise, the port propeller turned counter-clockwise. The direction of rotation was reversed in the YP-38 service test prototypes and production P-38 models.) The engines have long propeller gear drive sections to aid in streamlining aircraft, and are sometimes referred to as “long-nose Allisons.”

The V-1710-11 and -15 had a compression ratio of 6.65:1. They had a continuous power rating of 1,000 horsepower at 2,600 r.p.m. at Sea Level, and 1,150 horsepower at 2,950 r.p.m. for takeoff. The combination of a gear-driven supercharger and an exhaust-driven General Electric B-1 turbosupercharger allowed these engines to maintain their rated power levels to an altitude of 25,000 feet (7,620 meters).

The -11 and -15 were 7 feet, 10.46 inches (2.399 meters) long. The -11 was 3 feet, 6.59 inches (1.082 meters) high and 2 feet, 4.93 inches (0.7348 meters) wide. It weighed 1,300 pounds (589.7 kilograms). The -15 was 3 feet, 4.71 inches (1.034 meters) high, 2 feet, 4.94 inches (0.7351 meters) wide, and weighed 1,305 pounds (591.9 kilograms).

A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)
A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)

The XP-38 had a maximum speed of 413 miles per hour (664.66 kilometers per hour) at 20,000 feet (6,096 meters) and a service ceiling of 38,000 feet (11,582.4 meters).

The XP-38 was unarmed, but almost all production Lightnings carried a 20 mm auto cannon and four Browning .50-caliber machine guns grouped together in the nose. They could also carry bombs or rockets and jettisonable external fuel tanks.

Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)

The prototype XP-38 was damaged beyond repair when, on approach to Mitchel Field, New York, 11 February 1939, both engines failed to accelerate from idle due to carburetor icing. Unable to maintain altitude, Lieutenant Kelsey crash landed on a golf course and was unhurt.

Testing continued with thirteen YP-38A pre-production aircraft and was quickly placed in full production. The P-38 Lightning was one of the most successful combat aircraft of World War II. By the end of the war, Lockheed had built 10,037 Lightnings.

Lockheed test pilot Tony LeVier in the cockpit of P-38J-10-LO Lightning 42-68008. (Lockheed Martin)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather