Tag Archives: Test Pilot

14 October 1938

The Curtiss-Wright XP-40 prototype, 38-10, on its first flight, 14 October 1938. Test pilot Ed Elliot is in the cockpit. (San Diego Air and Space Museum Archives) 16_008532

14 October 1938: At Buffalo, New York, test pilot Everett Edward Elliot made the first flight in the new Curtiss-Wright Corporation’s Model 75P, a prototype for a single-engine pursuit plane which had been designated XP-40 by the U.S. Army Air Corps.

Curtiss-Wright’s Chief Engineer, Donovan Reese Berlin, had taken the tenth production P-36A Hawk, Air Corps serial number 38-10, and had its air-cooled radial engine replaced with the Harold Caminez-designed, liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-C13 (V-1710-19).

Donovan Reese Berlin. (Niagara Aerospace Museum)

The V-1710-19 was a single overhead cam (SOHC) 60° V-12 engine with four valves per cylinder and a compression ration of 6.65:1. It had a Normal Power rating of 910 horsepower at 2,600 r.p.m. at Sea Level, and 1,060 horsepower at 2,950 r.p.m. for Takeoff. At 10,000 feet (3,048 meters), the V-1710-19 had Maximum Continuous Power rating of 1,000 horsepower at 2,600 r.p.m., and Military Power rating of 1,150 horsepower at 2,950 r.p.m. The engine required 100/130-octane aviation gasoline. It drove a three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The V-1710-19 was 8 feet, 1.75 inches (2.483 meters) long, 3 feet, 4.75 inches (1.035 meters) high and 2 feet, 4.94 inches (0.735 meters) wide. It weighed 1,320 pounds (599 kilograms).

Curtiss-Wright XP-40 38-10 (SDASM 16_008531)

At 1,829.39-cubic-inches (29.978 liters), the original Pratt & Whitney Twin Wasp S1C1-G (R-1830-17) 14-cylinder radial engine had greater displacement and produced 80 horsepower more for takeoff than the Allison V-12. The long, narrow V-12, though, allowed for a much more streamlined engine cowling for higher speed and greater efficiency.

XP-40 16_008533
Curtiss-Wright XP-40 prototype. (SDASM 16_008534)
The Curtiss XP-40 prototype at Langley Field in the original configuration. (NASA)
The Curtiss-Wright XP-40 in the original configuration at Langley Field. (NASA)
Everett Edward Elliot (1907–1981).

In the early testing, the XP-40 was much slower than expected, reaching only 315 miles per hour (507 kilometers per hour). (The P-36A Hawk had a maximum speed of  313 miles per hour). Engineers experimented with different placement for the coolant radiator, oil coolers and the engine air intake. The Air Corps project officer, Lieutenant Benjamin Scovill Kelsey, had the prototype sent to the National Advisory Committee for Aeronautics (NACA) Research Center at Langley Field, Virginia, where the full-size airplane was placed inside a wind tunnel.

Over a two-month period, NACA engineers made a number of improvements. The radiator was moved forward under the engine and the oil coolers utilized the same air scoop. The exhaust manifolds were improved as were the landing gear doors.

When they had finished, Lieutenant Kelsey flew the modified XP-40 back to Curtiss. Its speed had been increased to 354 miles per hour (570 kilometers per hour), a 12% improvement.

By December 1939 the airplane had been further improved and was capable of 366 miles per hour (589 kilometers per hour).

The Curtiss-Wright XP-40 prototype in a wind tunnel at Langley Field, 24 April 1939. (NASA)
Curtiss XP-40 in the NACA Full Scale Wind Tunnel at Langley Field, Virginia, April 1939. (NASA)
Curtiss-Wright XP-40 in the NACA Full Scale Wind Tunnel at Langley Field, Virginia, 24 April 1939. (NASA)

The Curtiss Hawk 75P, XP-40 38-10, was 31 feet, 1 inch (9.574 meters) long with a wingspan of 37 feet, 4 inches (11.354 meters) and overall height of 12 feet, 4 inches (3.734 meters). It had an empty weight of 5,417 pounds (2,457.1 kilograms) and maximum gross weight of 6,870 pounds (3,116.2 kilograms).

The prototype had a maximum speed of 342 miles per hour (550 kilometers per hour) at 12,200 feet (3,719 meters) with a gross weight of 6,260 pounds (2,839.5 kilograms). Its range was 460 miles (740 kilometers) flying at 299 miles per hour (481 kilometers per hour) with 100 gallons (378.5 liters) of fuel. With 159 gallons (601.9 liters) and with speed reduced to 200 miles per hour (322 kilometers per hour), the XP-40 had a maximum range of 1,180 miles (1,899 kilometers).

The prototype was armed with two air-cooled Browning AN-M2 .50-caliber machine guns mounted above the engine and synchronized to fire forward through the propeller arc.

The Air Corps placed an initial order for 524 P-40s. This was the largest single order for airplanes by the U.S. military up to that time. The first production model was the P-40 Warhawk, armed with two .50-caliber machine guns. There was only one P-40A variant which was a P-40 modified as a camera aircraft. The definitive pursuit model was the P-40B Warhawk, which retained the two .50-caliber guns of the P-40 and added two Browning M2 .30-caliber machine guns to each of the wings.

A Curtiss-Wright P-40B Warhawk, 79th Pursuit Squadron, 20th Pursuit Group, Hamilton Field, California, 1940. (U.S. Air Force)

The P-40B was best known as the airplane flown by the American Volunteer Group fighting for China against the Japanese. They were called the “Flying Tigers”. Between 1939 and 1945, Curtiss built 13,738 P-40s in many configurations. They flew in combat in every theater of operations during World War II.

A Curtiss-Wright Hawk 81-A3 (Tomahawk IIb) of the American Volunteer Group, Kunming, China, 1942. (U.S. Air Force)

© 2018, Bryan R. Swopes

12 October 1961

Jackie Cochran with her record-setting Northrop T-38A-30-NO Talon, 60-0551, at Edwards Air Force Base, 1961. (U.S. Air Force)
Jackie Cochran with her record-setting Northrop T-38A-30-NO Talon, 60-0551, at Edwards Air Force Base, 1961. (U.S. Air Force)

12 October 1961: From August to October 1961, Jackie Cochran, a consultant to Northrop Corporation, set a series of speed, distance and altitude records while flying a Northrop T-38A-30-NO Talon supersonic trainer, serial number 60-0551. On the final day of the record series, she set two Fédération Aéronautique Internationale (FAI) world records, taking the T-38 to altitudes of 16,841 meters (55,253 feet) in horizontal flight ¹ and reaching a peak altitude of 17,091 meters (56,073 feet). ²

Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Northrop T-38A-30-NO Talon at Edwards Air Force Base, California. (U.S. Air Force)
Northrop T-38A-30-NO Talon 60-0551 at Edwards Air Force Base, California. (U.S. Air Force)

Famed U.S. Air Force test pilot Chuck Yeager, a close friend of Jackie Cochran, kept notes during the record series:

October 12  Jackie took off at 9 am in the T-38 using afterburner. Bud Anderson and I chased her in the F-100. It was an excellent flight with everything working perfect. Jackie entered the course at 55,800 feet at .93 Mach and accelerated to radar. At the end of the run Jackie pulled up to 56,800 and then pushed over. She cut the right afterburner at 52,000 feet and the left one at 50,000. At 12,000 feet she removed the face piece from her pressure suit and made a perfect landing on the lake bed.

Northrop-Air (Norair) presented Miss Cochran with one dozen yellow roses.

A very tender ending to a wonderful program and a fitting token to a wonderful lady—a pilot who gave Norair much more than they expected.

— Brigadier General Charles Elwood (“Chuck”) Yeager, U.S. Air Force, quoted in Jackie Cochran: An Autobiography, by Jacqueline Cochran and Maryann Bucknum Brinley, Bantam Books, New York, 1987, Pages 307–308.

Jackie Cochran and Chuck Yeager at Edwards Air Force Base, California, after a flight in the record-setting Northrop T-38A Talon. (U.S. Air Force)
Jackie Cochran and Chuck Yeager at Edwards Air Force Base, California, after a flight in the record-setting Northrop T-38A Talon. (U.S. Air Force)

The T-38A is a two-seat, twin-engine jet trainer capable of supersonic speed. It is powered by two General Electric J85-5A turbojet engines producing 2,050 pounds of thrust (3,850 with afterburner). Jackie Cochran demonstrated its maximum speed, Mach 1.3. It has a service ceiling of 50,000 feet (15,240 meters) and a range of 1,140 miles (1,835 kilometers). In production from 1961 to 1972, Northrop has produced nearly 1,200 T-38s. It remains in service with the U.S. Air Force, U.S. Navy, and the National Aeronautics and Space Administration.

Jackie Cochran’s record-setting T-38 is in the collection of the Smithsonian Institution, National Air and Space Museum.

Jackie Cochran’s record-setting Northrop T-38A-30-NO Talon, 60-0551, on display at the Smithsonian Institution, Steven F. Udvar-Hazy Center. The Talon is in the markings of the Sacramento Air Logistics Center, McClellan Air Force Base, Sacramento, California. (NASM)

¹ FAI Record File Number 12884

² FAI Record File Number 12855

© 2018, Bryan R. Swopes

9 October 1987

PP1, the first prototype of the EH101, ZF 641. (Paul Thallon)
PP1, the first prototype of the EH101, ZF 641. (Paul Thallon)

9 October 1987: Westland Helicopters Ltd. Chief Test Pilot John Trevor Eggington and Deputy Chief Test Pilot Colin W. Hague take PP1, the first EH 101 prototype, for its first flight at Yeovil, Somerset, United Kingdom. The helicopter had been completed 7 April 1987 and underwent months of ground testing.

A medium-lift helicopter, the EH 101 was a joint venture of Westland and Costruzioni Aeronautiche Giovanni Agusta S.p.A. of Italy, known then as European Helicopter Industries, or EHI, to produce a replacement for the Sikorsky S-61 Sea King, which both companies built under license. The Italian and British companies merged in July 2000 and are now known as AgustaWestland NV, with corporate headquarters in the Netherlands. After the merger of the two helicopter manufacturers, the EH 101 was redesignated AW101. It is also known as the Merlin.

Canadian Forces CH-149 Cormorant, a search and rescue variant of the AgustaWestland AW101. (Korona4Reaal via Wikipedia)
Canadian Forces CH-149 Cormorant 149902, a search and rescue variant of the AgustaWestland AW101. (Korona4Reel via Wikipedia)

Nine prototypes were built, four by Agusta at Vergiate, Italy, and five by Westland at Yeovil. During testing, Agusta-built PP2 and Westland’s PP4 were destroyed.

PP1, the first prototype, was powered by three General Electric CT7-2A turboshaft engines which were rated at 1,625 shaft horsepower, each. In production, Rolls-Royce/Turbomeca RTM322 engines are optional, as are the more powerful CT7-8s. Produced in both military and civil variants, the Merlin is used in search-and-rescue, anti-submarine warfare, mine countermeasures, airborne early warning and utility configurations. Production began in 1995 and continues today.

The AgustaWestland AW101 Merlin is a single main rotor/tail rotor medium helicopter powered by three turboshaft engines. It is equipped with retractable tricycle landing gear. The helicopter may be flown by a single pilot and uses a digital flight control system. The actual flight crew is dependent on aircraft configuration and mission.

The five blade composite main rotor has a diameter of 61 feet, 0 inches (18.593 meters) and turns counterclockwise as seen from above. (The advancing blade is on the helicopter’s right side.) The blades use a BERP feature that was pioneered on the Westland Lynx AH.1 Lynx, G-LYNX, which Trevor Eddington flew to a world speed record, 11 August 1986. This allows higher speeds, greater gross weight and is quieter than a standard blade. A four blade tail rotor with a diameter of 13 feet, 1 inch (3.962 meters) is positioned on the left side of the tail boom in pusher configuration. It rotates clockwise as seen from the helicopter’s left. The tail rotor pylon is inclined to the left.

PP.5 parked aboard HMS iron Duke. (Royal Navy)
PP5, the prototype  ASW variant parked aboard HMS Iron Duke (F234). (Royal Navy)

Overall length of the AW101 is 74 feet, 10 inches (22.809 meters) with rotors turning. The fuselage is 64 feet, 1 inch (19.533 meters) long. Overall height of the helicopter is 18 feet, 7 inches (5.664 meters). Its empty weight is 20,018 pounds (9,080 kilograms) and the maximum takeoff weight (MTOW) is 34,392 pounds (15,600 kilograms).

The RTM322 engine was developed as a joint venture between Rolls-Royce and Turboméca, but is now a Safran Helicopter Engines product. The RTM322 02/8 is a modular reverse-flow turboshaft engine with a 3-stage axial-flow, 1 stage centrifugal-flow compressor and 2-stage high-pressure, 2-stage power turbine. The output drive shaft turns 20,900 r.p.m. The RTM322 02/08 is rated at 2,000 shaft horsepower, and 2,270 shaft horsepower for takeoff. It has a One Engine Inoperative (OEI) rating of 2,472 shaft horsepower (30 minute limit). The engine is 3 feet, 10.1 inches (1.171 meters) long, 2 feet, 1.5 inches (0.648 meters) in diameter and weighs 503 pounds (228.2 kilograms).

The AW101’s cruise speed is 278 kilometers per hour (150 knots). The hover ceiling in ground effect (HIGE) is 3,307 meters (10,850 feet). In utility configuration, the Merlin carries fuel for 6 hours, 30 minutes of flight and has a maximum range of 1,363 kilometers (735 nautical miles).

John Trevor Egginton, Chief Test Pilot, Westland Helicopters. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
John Trevor Eggington, Chief Test Pilot, Westland Helicopters. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Trevor Eggington retired from Westland in 1988 and Colin Hague became the company’s chief test pilot. In 2003, Hague was appointed an Officer of the Most Excellent (OBE) Order of the British Empire for his contributions to aviation.

Deputy Chief Test Pilot Colin W.Hague, with the first prototype EH101, PP1. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Deputy Chief Test Pilot Colin W. Hague, with the first prototype EH101, PP1. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Since 2010, PP1 has been used as an instructional airframe for maintenance personnel at RNAS Culdrose, Cornwall, UK.

ZF641, the first prototype of the EH101 (AW101) Merlin, at RNAS Culdrose, 2010. (dyvroeth)
ZF 641, the first prototype of the EH 101 (AW101) Merlin, at RNAS Culdrose, 2010. (dyvroeth)

© 2016, Bryan R. Swopes

8 October 1954

Captain Arthur W. Murray, U.S. Air Force (1918–2011). Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with K-1 helmet for high altitude flight. (U.S. Air Force)
Captain Arthur W. Murray, U.S. Air Force (1918–2011). Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit. (U.S. Air Force)

8 October 1954: After two earlier glide flights flown by test pilot Jack Ridley, Captain Arthur Warren (“Kit”) Murray, U.S. Air Force, made the first powered flight of the Bell Aircraft Corporation X-1B rocket-powered supersonic research aircraft, serial number 48-1385.

Five months earlier, Murray had flown the X-1A to an altitude of 90,440 feet (25,570 meters). He was the first pilot to fly high enough to see the curvature of the Earth and a dark sky at mid day.

The X-1B was the third in a series of experimental X-1 rocketplane variants built by the Bell Aircraft Corporation for the United States Air Force and the National Advisory Committee for Aeronautics (NACA), for research into supersonic flight. It was fitted with 300 thermocouples to measure aerodynamic heating. It was the first aircraft equipped with a pilot-controlled reaction control system which allowed for maneuvering the aircraft at high altitudes where normal aerodynamic controls were no longer effective.

NACA 800, a modified Boeing B-29 Superfortress, 45-21800, with the Bell X-1B, at Edwards Air Force Base, 8 April 1958. (NASA)
NACA 800, a modified Boeing B-29 Superfortress, 45-21800, with the Bell X-1B, at Edwards Air Force Base, 9 April 1958. (NASA)

Like the X-1 and X-1A, the X-1B was carried by a modified four-engine B-29 Superfortress heavy bomber (B-29-96-BW 45-21800), before being airdropped at altitudes of 25,000 to 35,000 feet (7,620 to 10,668 meters) near Edwards Air Force Base, California. After its fuel was expended, the pilot would glide for a landing on Rogers Dry Lake.

The X-1B was 35 feet, 7 inches (10.846 meters) long with a wing span of 28 feet (8.53 meters). Its loaded weight was 16,590 pounds (7,520 kilograms). The X-1B was powered by a Reaction Motors XLR11-RM-6 four-chamber rocket engine, fueled with a mixture of water and alcohol with liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons. The XLR11 was 5 feet, 0 inches (1.524 meters) long, 1 foot, 7 inches (0.483 meters) in diameter, and weighed 210 pounds (95 kilograms). Each of the four thrust chambers were 1 foot, 9¾ inches (0.552 meters) long and 6 inches (0.152 meters) in diameter.

The rocket plane was designed to reach 1,650 miles per hour (2,655 kilometers per hour) and 90,000 feet (27,432 meters).

Bell X-1B (Bell Aircraft Corporation)
Bell X-1B 46-1385 (U.S. Air Force)
Bell X-1B 46-1385 on Rogers Dry Lake (NASA E-2547)
Bell X-1B on Rogers Dry Lake (NASA)
Bell X-1B 46-1385 on Rogers Dry Lake (NASA)

This was Kit Murray’s only flight in the X-1B. After being flown by a number of other Air Force test pilots, including Stuart Childs and Frank Everest, the rocketplane was turned over to NACA for the continued flight test program. NACA research pilots John McKay and Neil Armstrong made those flights.

X-1B 48-1385 made 27 flights. It was retired in January 1958. It is in the collection of the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.

Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)
Bell X-1B 46-1385 parked on Rogers Dry Lake, 30 July 1958. (NASA)

Arthur Warren Murray was born at Cresson, Cambria County, Pennsylvania, 26 December 1918. He was the first of two children of Charles Chester Murray, a clerk, and Elsie Espy Murray.

Arthur Murray attended Huntingdon High School, Huntingdon, Pennsylvania, graduating 4 June 1936, and then studied Juniata College, also in Huntingdon, 1937–1938.

Kit Murray enlisted in the Field Artillery, Pennsylvania National Guard, 17 November 1939. (Some sources state that he served in the U.S. Cavalry.) Murray had brown hair and blue eyes, was 5 feet, 10 inches (1.78 meters) tall and weighed 150 pounds (68 kilograms). Following the United States’ entry into World War II, Sergeant Murray requested to be trained as a pilot. He was appointed a flight officer (a warrant officer rank), Army of the United States, on 5 December 1942. On 15 October 1943 Flight Officer Murray received a battlefield promotion to the commissioned rank of second lieutenant, A.U.S.

Between 6 January and 22 October 1943, Murray flew over 50 combat missions in the Curtiss-Wright P-40 Warhawk across North Africa. After about ten months in the Mediterranean Theater, he returned to the United States, assigned as an instructor flying the Republic P-47 Thunderbolt fighter bomber, stationed at Bradley Field, Hartford, Connecticut.

Lieutenant Murray married Miss Elizabeth Anne Strelic, who had immigrated from Czechoslovakia with her family as an infant, at Atlantic City, New Jersey, 29 December 1943. They would have six children, and foster a seventh. They later divorced. (Mrs. Murray died in 1980.)

Murray was promoted to 1st lieutenant, A.U.S., 8 August 1944. His next assignment was as a maintenance officer. He was sent to Maintenance Engineering School at Chanute Field, Rantoul, Illinois, and from there to the Flight Test School at Wright Field, Dayton, Ohio.

Murray was the first test pilot to be permanently assigned to Muroc Army Air Field (later, Edwards Air Force Base). Other test pilots, such as Captain Chuck Yeager, were assigned to Wright Field and traveled to Muroc as necessary.

Murray’s A.U.S. commission was converted to first lieutenant, Air Corps, United States Army, on 19 June 1947, with date of rank retroactive to 15 October 1946. The U.S. Air Force became a separate military service in 1947, and Lieutenant Murray became an officer in the new service.

Colonel Arthur Warren (“Kit”) Murray, U.S. Air Force.

Later, 1958–1960, Major Murray was the U.S. Air Force project officer for the North American Aviation X-15 hypersonic research rocketplane at Wright Field.

Colonel Murray retired from the U.S. Air Force in 1961. He next worked for Boeing in Seattle, Washington, from 1961 to 1969, and then Bell Helicopter in Texas.

On 4 April 1975, Kit Murray married his second wife, Ms. Ann Tackitt Humphreys, an interior decorator, in Tarrant County, Texas.

Colonel Arthur Warren Murray, United States Air Force (Retired), died at West, Texas, 25 July 2011, at the age of 92 years.

© 2018, Bryan R. Swopes

7 October 1963

Prototype Learjet 23 N801L, first flight, 7 October 1963. (Lear)
Prototype Learjet 23, N801L, first flight, 7 October 1963. (Lear Jet Corporation)

7 October 1963: The first of two Learjet 23 prototypes, N801L, makes its first flight at Wichita, Kansas, with test pilots Henry Grady (“Hank”) Beaird, Jr., and Robert S. Hagan. A light twin-engine business jet, the Learjet 23 is considered a “first” because it was designed from the start as a civil aircraft.

The Learjet 23 is operated by two pilots and can carry six passengers. It is 43 feet, 3 inches (13.183 meters) long with a wingspan of 35 feet, 7 inches (10.846 meters) and overall height of 12 feet, 7 inches (3.835 meters). It has an empty weight of 6,150 pounds (2,790 kilograms) and maximum takeoff weight of 12,499 pounds (5,670 kilograms).

A characteristic of all Learjets is the 13° sweep of their wings’ leading edges, and the straight trailing edge.

Learjet 23 N802L was the second prototype. This airplane is in the collection of the Smithsonian Instititution National Air and Space Museum. (NASM 9A11735)

The airplane was powered by two General Electric CJ610-4 turbojet engines. The CJ610 is a single-shaft axial-flow turbojet with an 8-stage compressor and 2-stage turbine. The CJ610-4 has a maximum continuous power rating of 2,700 pounds (12.010 kilonewtons) at 16,500 r.p.m. at Sea Level, and 2,850 pounds of thrust (12.677 kilonewtons) at 16,700 r.p.m., for takeoff (5 minute limit). The engine is 3 feet, 4.50 inches (1.029 meters) long, 1 foot, 5.56 inches (0.446 meters) in diameter, and weighs 403 pounds (183 kilograms).

The Learjet 23 has a cruise speed of 518 miles per hour (834 kilometers per hour) at 40,000 feet (12,192 meters) and a maximum speed of 561 miles per hour (903 kilometers per hour), 0.82 Mach, at 24,000 feet (7,315 meters). The service ceiling is 45,000 feet (13,716 meters) and its maximum range is 1,830 miles (2,945 kilometers).

Lear Jet Corporation built approximately 100 Learjet 23s.

The first prototype was damaged beyond economical repair while simulating an engine failure on takeoff during flight testing, 4 June 1964. The accident was attributed to pilot error. N801L had accumulated just 194 flight hours.

© 2018, Bryan R. Swopes