Tag Archives: Test Pilot

27 September 1956

Captain Milburn G. Apt, U.S. Air Force, with a Bell X-2. (U.S. Air Force)
Captain Milburn Grant Apt, United States Air Force, with a Bell X-2. (U. S. Air Force)

27 September 1956: Captain Milburn G. (“Mel”) Apt, United States Air Force, was an experimental test pilot assigned to the Air Force Flight Test Center at Edwards Air Force Base, California. After Frank Everest and Iven Kincheloe had made twelve powered flights in the Bell X-2 supersonic research aircraft, Mel Apt was the next test pilot to fly it.

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

Bell X-2 46-675 on its transportation dolly at Edwards Air Force Base, California, 1952. (NASA)
The second of two Bell X-2 supersonic research rocketplanes, 46-675, on its transportation dolly at Edwards Air Force Base, California, 1952. On 12 May 1953 this X-2 exploded during a captive test flight, killing Bell’s test pilot Jean L. “Skip” Ziegler. (NASA)

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

Bell X-2 46-674 after drop from Boeing EB-50D Superfortress 48-096. (U.S. Air Force)
Bell X-2 46-674 after drop from Boeing EB-50D Superfortress 48-096. (U.S. Air Force)

With Mel Apt in the cockpit on his first rocketplane flight, the B-50 carried the X-2 to 31,800 feet (9,693 meters). After it was dropped from the bomber, Apt ignited the rocket engine and began to accelerate. He passed Mach 1 at 44,000 feet (13,411 meters) and continued to climb. Apt flew an “extraordinarily precise profile” to reach 72,200 feet (22,007 meters) where he put the X-2 into a dive. The rocket engine burned 12.5 seconds longer than planned, and at 65,589 feet (19,992 meters) the X-2 reached Mach 3.196 (2,094 miles per hour, 3,377 kilometers per hour).

Milburn Apt was the first pilot to exceed Mach 3. He was The Fastest Man Alive.

Bell X-2 46-674 in flight over Southern California, 1955–56. Note the supersonic diamond-shaped shock waves in the rocket engine's exhaust. (Bell aircraft Corporation)
Bell X-2 46-674 in flight over Southern California, 1955–56. Note the supersonic diamond-shaped shock waves in the rocket engine’s exhaust. (Bell Aircraft Corporation)

It was known that the X-2 could be unstable in high speed maneuvers. The flight plan called for Apt to slow to Mach 2.4 before beginning a gradual turn back toward Rogers Dry Lake where he was to land, but he began the turn while still at Mach 3. Twenty seconds after engine burn out, the X-2 began to oscillate in all axes and departed controlled flight. His last radio transmission was, “There she goes.” ¹

Mel Apt was subjected to acceleration forces of ± 6 Gs. It is believed that he was momentarily unconscious. Out of control, the X-2 fell through 40,000 feet (12,192 meters) in an inverted spin. Apt initiated the escape capsule separation, in which the entire nose of the X-2 was released from the airframe. It pitched down violently and Mel Apt was knocked unconscious again. He regained consciousness a second time and tried to parachute from the escape capsule, but was still inside when it hit the desert floor at several hundred miles per hour. Mel Apt was killed instantly.

Since 1950, Milburn G. Apt was the thirteenth test pilot killed at Edwards Air Force Base.

Wreckage of the Bell X-2, 46-674. (U.S. Air Force)
Wreckage of the Bell X-2, 46-674, in the Kramer Hills, east of Edwards Air Force Base. (U.S. Air Force)
Wreckage of the Bell X-2, 46-674. (NASM 9A08208)

Milburn Grant Apt was born at Buffalo, Kansas, 8 April 1924. He was the third child of Oley Glen Apt, a farmer, and Ada Willoughby Apt.

“Mel” Apt enlisted as a private in the Air Corps Enlisted Reserve, United States Army, 9 November 1942. On 23 June 1943, Private Apt was appointed an Aviation Cadet. After completing flight training, Cadet Apt was commissioned a Second Lieutenant, Army of the United States (A.U.S.). He was promoted to First Lieutenant, A.U.S., 4 September 1945. Apt was released from active duty on 11 August 1946. On 10 October 1947, he was reclassified as a Second Lieutenant, Air Corps, United States Army, with date of rank 8 April 1945.

In February 1950, Lieutenant Apt, then stationed at Williams Air Force Base, Arizona, married Miss Faye Lorrie Baker of Phoenix. They would have two children.

Mel Apt earned a Bachelor of Science degree from the University of Kansas, Lawrence, Kansas, in 1951, and a second bachelor’s degree in aeronautical engineering from the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. He then attended the U.S. Air Force Experimental Test Pilot School at Edwards Air Force Base, California, graduating in September 1954. Apt was assigned to the Fighter Operations Branch, Air Force Flight Test Center, as a test pilot.

On 22 December 1954, Captain Apt was flying a chase plane during a test at Edwards. The test aircraft crash-landed on the dry lake and caught fire with its pilot trapped inside. Mel Apt, with his bare hands, rescued the other test pilot, saving his life. For this courageous act, he was awarded the Soldier’s Medal.

Captain Apt was posthumously awarded the Distinguished Flying Cross for his flight in the X-2. The medal was presented to his widow in a ceremony at Edwards in March 1957.

Captain Milburn Grant Apt, United States Air Force, was 32 years old at the time of his death. His remains were buried at the Buffalo Cemetery, Buffalo, Kansas.

Captain Iven Carl Kincheloe and Captain Milburn Grant Apt (seated in cockpit) with the Bell X-2 at Edwards Air Force Base, 1956. (Jet Pilot Overseas)

¹ Recommended: Coupling Dynamics in Aircraft: A Historical Perspective, by Richard E. Day, Dryden Flight Research Center, Edwards AFB, California NASA Special Publications 532, 1997.

© 2018, Bryan R. Swopes

27 September 1946

Geoffrey Raoul de Havilland, Jr. (Sport & General Press Agency, Ltd, 1 September 1946; © National Portrait Gallery, London. NPG x184369)

27 September 1946: Geoffrey Raoul de Havilland, Jr., O.B.E., Chief Test Pilot of the de Havilland Aircraft Co., Ltd., and the son of the firm’s founder, was killed during a test flight of a prototype DH.108 Swallow, TG306.

Geoffrey de Havilland, Jr., in the cockpit of the second DH.108 Swallow prototype, TG/306. (Flight)
Geoffrey de Havilland, Jr., in the cockpit of the second DH.108 Swallow prototype, TG306. (FLIGHT)

De Havilland had taken off from the company airfield at Hatfield at 5:26 p.m. for a planned 45 minute flight. Flying over the Thames Estuary, east of London, England, de Havilland put the swept-wing jet into a high-speed dive from 10,000 feet (3,048 meters). As it approached 5,000 feet (1,524 meters) at 0.88 Mach, (658 miles per hour, 1,060 kilometers per hour), the shock waves building up along the wings’ leading edges disrupted the air flow over the wings, causing them to stall. TG306 pitched violently downward. A NASA report called this “. . . an undamped violently divergent longitudinal pitching oscillation at Mach 0.875. . . .”  The extreme aerodynamic loads cracked the main spar and both wings failed. The DH.108 crashed into Egypt Bay, Gravesend, Kent.

The wreck was located the following day. The body of Geoffrey de Havilland was found ten days later. He had suffered a broken neck and fractured skull as a result of his head striking the canopy during the violent oscillations of the aircraft.

(Grace’s Guide)

FLIGHT reported:

Geoffrey de Havilland was one of the outstanding test pilots in the country, and his work has played a vital part in the perfecting of such noteworthy types as the Mosquito, Hornet, Vampire and 108. His death is a serious blow not only to the company but to the country, for in the exploration of the unknown threshold of sonic flight, a combination of skill and cool courage are qualities demanding the utmost of test pilots. Geoffrey de Havilland had these qualities in a very high degree.

FLIGHT and AIRCRAFT ENGINEER, No.1971, Vol. 1, Thursday, 3 October 1946, at page 364

De Havilland DH.108 TG/306. (Unattributed)
De Havilland DH.108 TG306. (Unattributed)

The DH.108 was a single-seat, single-engine jet fighter prototype with swept wings and no conventional tail. It was similar in configuration to the Messerschmitt Me-163 rocket-powered interceptor. The first two prototypes, TG283 and TG306, were built using production English Electric DH.106 Vampire F.I fuselages. TG283 had a 43° sweep to the wings’ leading edge, while TG306 had a 45° sweep. The airplane was powered by a de Havilland Goblin 3 centrifugal-flow turbojet engine (a development of the Halford H.1) which produced 3,350 pounds of thrust (14.90 kilonewtons).

The first and third DH.108s also crashed. VW120 was destroyed on 15 February 1950 when it crashed after a dive. The left wing had separated and the pilot, Squadron Leader Stuart Muller-Rowland, also suffered a broken neck as a result of the airplane’s violent oscillations. On 1 May 1950, while conducting low-speed tests, TG283 went into an inverted spin. Squadron Leader George E.C. Genders, AFC, DFM, bailed out but his parachute did not open before he hit the ground and he was killed.

Geoffrey de Havilland, Jr., exits the cockpit of one of the company's jet aircraft. (Photograph Courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Geoffrey de Havilland, Jr., OBE, exits the cockpit of a DH.108 Swallow prototype. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

© 2018, Bryan R. Swopes

25 September 1960

Commander John F. Davis, United States Navy, with a McDonnell F4H-1 Phantom II. Note the F6F-5K drone “kill” mark under the windshield. (U.S. Navy)
Commander John F. Davis, United States Navy, with a McDonnell F4H-1 Phantom II. Note the F6F-5K drone “kill” mark under the windshield. (U.S. Navy)

25 September 1960: At Edwards Air Force Base, California, Commander John Franklin (“Jeff”) Davis, United States Navy, flew a McDonnell F4H-1 Phantom II to a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 100 Kilometers Without Payload, averaging 2,237.37 kilometers per hour (1390.24 miles per hour).¹ Commander Davis flew the 62-mile circular course at an altitude of 45,000 feet (13,716 meters).

Diagram of the 100-kilometer closed circuit. (McDonnell)
Diagram of the 100-kilometer closed circuit. (McDonnell Aircraft Corporation)

“On 25 September 1960 Davis flew the shorter, 100-kilometer course at 1,390.24 miles per hour, roughly Mach 2.2. He went around the course in a continuous circle, at 70° of bank and three g’s. The heavy bank put the honeycomb structure of the right stabilator directly in the engine exhaust the entire way around, but it held on. These two flights demonstrated the brute strength of the airframe and the sophistication of the F4H navigation system around the curves.”

Engineering the F-4 Phantom II: parts into systems, by Glenn E. Bugos, Naval Institute Press, Annapolis, Maryland, 1996, Chapter 5 at Page 104.

For this flight, Commander Davis was awarded the Distinguished Flying Cross by Secretary of the Navy William Birrell Franke, 4 October 1960.

McDonnell F4H-1 Phantom II, Bu. No. 145311. This probably the Phantom flown by Jeff Davis for the 100-kilometer record. (U.S. Navy)
McDonnell F4H-1F Phantom II, Bu. No. 145311 (after 1962, redesignated as F-4A-2-MC). This is probably the Phantom flown by Jeff Davis for the 100-kilometer record. This airplane was damaged when the nose gear collapsed during an emergency landing at MCAS Cherry Point, 9 April 1964. (U.S. Navy)

John Franklin Davis was born at Chicago, Illinois, 4May 1921. He was the son of John E. Davis and Bernice B. McNair Davis.

On 11 July 1940, John Franklin Davis was admitted to the United States Naval Academy, Annapolis, Maryland, as a Midshipman. He graduated and was commissioned an Ensign, United States Navy, 9 June 1943. Ensign Davis served aboard the battleship USS New York (BB-34). He was promoted to Lieutenant (junior grade), 1 September 1944. He was promoted to Lieutenant, 1 April 1946.

Also in 1946, Lieutenant Davis qualified as a Naval Aviator. He was assigned as a pilot VF-74 aboard USS Midway (CVB-41). During the early 1950s, Lieutenant Davis served as operations officer for VF-191 aboard USS Oriskany (CVA-34). The squadron was equipped with the swept-wing Grumman F9F-6 Cougar. He then commanded VF-191, flying the Chance Vought F8U Crusader. Commander Davis was then assigned to the Bureau of Weapons as project officer for the McDonnell F4H Phantom II.

Following that assignment, Commander Davis was selected as executive officer of the Midway-class aircraft carrier, USS Coral Sea (CVA-43).

Captain John Franklin Davis, United States Navy.

United States Navy aircraft carriers are traditionally commanded by Naval Aviators, but they usually are required to have experience commanding a “deep-draft” ship. Early in his career, Captain Davis had served aboard the 27,000-ton USS New York. He was given command of the Haskell-class attack transport USS Talladega (APA-208) from 10 April 1965 through 1966. From 30 September 1968 to 15 November 1969, Captain Davis commanded the supercarrier USS Kitty Hawk (CV-63) during combat operations in Southeast Asia.

USS Kitty Hawk (CVA-63) (U.S. Navy)

Captain Davis was married to the former Miss Bonnie Adair of Bay St. Louis, Mississippi. They had six children.

Captain John Franklin Davis, United States Navy (Retired), died at Marrero, Louisiana, 16 May 1993. His ashes were spread at sea from his last command, USS Kitty Hawk.

¹ FAI Record File Number 8898

© 2017, Bryan R. Swopes

25 September 1920

Test pilot Joseph Sadi-Lecointe with a Nieuport Delâge Ni-D 40R World record-setting biplane.
Test pilot Joseph Sadi-Lecointe with a Nieuport Delâge Ni-D 40R World Altitude Record-setting biplane, circa 1923. (Bibliothèque nationale de France)

25 September 1920: At Villesauvage-La Marmogne, France, Joseph Sadi-Lecointe flew a Nieuport-Delâge Ni-D 29V to set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over 100 Kilometers. His average speed was 279.50 kilometers per hour (173.67 miles per hour).¹

Three days later, 28 September 1920, Sadi-Lacointe won the Gordon Bennett Aviation Trophy Race with a Ni-D 29V. He set four FAI world speed records with these airplanes, reaching a maximum 302.53 kilometers per hour (187.98 miles per hour) on 20 October 1920.²

Nieuport-Delâge Ni-D 29V
One of three Nieuport-Delâge Ni-D 29V racers. Sadi-Lecointe flew this airplane, #10, to win the Gordon Bennett Aviation Trophy. (Unattributed)

Sadi-Lecointe’s Ni-D 29V was one of three racing variants of the highly successful single-engine, single-seat Ni-D 29C.1 biplane fighter, which was the fastest in the world at the time. The Ni-D 29V was 21 feet, 3.5 inches (6.489 meters) long, with a wing span of just 6.00 meters (19 feet, 8¼ inches), shortened from the 31 feet, 10 inch (9.703 meters) wingspan of the standard production chasseur.

This right rear-quarter view of a Nieuport-Delâge Ni-D 29V shows the shortned single-bay wing configuration. (United States Air Force)
This right rear-quarter view of one of the three Nieuport-Delâge Ni-D 29V racers shows the shortened single-bay wing configuration. (United States Air Force)

The airplane was powered by a water-cooled, normally aspirated, 1,127.29-cubic-inch displacement (18.47 liter) right-hand tractor Hispano-Suiza 8Fb single overhead cam (SOHC) 90° V-8 engine, modified to increase its output to 320 horsepower. This was a direct-drive engine, and turned a two-bladed-fixed pitch propeller.

The standard airplane had a top speed of 235 kilometers per hour (146 miles per hour), a range of 580 kilometers (360 miles) and a service ceiling of 8,500 meters (27,887 feet).

Nieuport-Delâge Ni-D 29C.1, s/n 12002, right front quarter view.
Nieuport-Delâge Ni-D 29 C.1, s/n 12002, right front quarter view. (worldmilitary.net)
Nieuport-Delâge Ni-D 29C.1, s/n 12002, right profile.
Nieuport-Delâge Ni-D 29 C.1, s/n 12002, right profile. A well-known landmark can be seen at the left edge of the photograph. (worldmilitary.net)
Nieuport-Delâge Ni-D 29C.1, s/n 12002, right rear three-quarter view.
Nieuport-Delâge Ni-D 29 C.1, s/n 12002, right rear three-quarter view. (worldmilitary.net)

Joseph Sadi-Lecointe learned to fly in 1910. The Aero Club de France awarded him its license number 431 on 10 February 1910.

He joined the Service Aéronautique (the original form of the French Air Force) as a mechanic in October 1912, and was designated pilote militaire nº375, 20 September 1913. He served as a pilot during World War I, flying the Blériot XI-2, Morane LA and Nieuport X, then in December 1915 became a flight instructor at l’Ecole de Pilotage d’Avord. Sadi-Lacointe was promoted from the enlisted ranks to sous-lieutenant, 17 September 1917, and was assigned as a test pilot at BlériotSociété Pour L’Aviation et ses Dérivés, where he worked on the development of the famous SPAD S.XIII C.1 fighter.

Joseph Sadi-Lecointe was a test pilot for the Société Pour L’Aviation et ses Dérivés SPAD S.XIII C.1 fighter
Sous-Lieutenant Joseph Sadi-Lecointe was a test pilot for the Société Pour L’Aviation et ses Dérivés SPAD S.XIII C.1 fighter. (Bibliothèque nationale de France)

After the War, he was a test pilot for Nieuport-Delâge, and participated in numerous races and set a series of speed and altitude records with the company’s airplanes.

Sadi-Lecointe returned to military service in 1925 and participated in the Second Moroccan War. Then in 1927, he returned to his position as chief test pilot for Nieuport-Delâge. From 1936 to 1940, he served as Inspector General of Aviation for the French Air Ministry. With the outbreak of World War II in 1939, Lieutenant Colonel Sadi-Lecointe was again recalled to military service as Inspector of Flying Schools.

With the Fall of France, Sadi-Lacointe joined La Résistance française, and operated with the group, Rafale Andromède. He was captured and tortured by the Gestapo at Paris, and died as a result, 15 July 1944.

Joseph Sadi-Lecointe, Commandeur Ordre national de la Légion d’honneur, was awarded the Croix de Guerre in three wars. He was posthumously awarded the Médaille de la Résistance. The Aéro-Club de France awarded him its Grande Médaille d’Or de l’Aéro-Club de France. During his flying career, Sadi-Lecointe set seven World Records for Speed, and three World Records for Altitude.

Joseph Sadi-Lecointe. (FAI)
Joseph Sadi-Lecointe.  (FAI)

¹ FAI Record File Number 15489

² FAI Record File Number 15499

© 2017, Bryan R. Swopes

John Watts Young (24 September 1930–5 January 2018)

John Watts Young (NASA)
John Watts Young (NASA)

JOHN W. YOUNG (CAPTAIN, USN RET.)
NASA ASTRONAUT (FORMER)

PERSONAL DATA: Born September 24, 1930, in San Francisco, California. Married to the former Susy Feldman of St. Louis, Missouri. Two children, three grandchildren. Enjoys wind surfing, bicycling, reading, and gardening.

EDUCATION: Graduated from Orlando High School, Orlando, Florida; received a bachelor of science degree in aeronautical engineering with highest honors from Georgia Institute of Technology in 1952.

ORGANIZATIONS: Fellow of the American Astronautical Society (AAS), the Society of Experimental Test Pilots (SETP), and the American Institute of Aeronautics and Astronautics (AIAA).

SPECIAL HONORS: Awarded the Congressional Space Medal of Honor (1981), 4 NASA Distinguished Service Medals, NASA Outstanding Leadership Medal (1992), NASA Exceptional Engineering Achievement Medal (1987), NASA Outstanding Achievement Medal (1994), Navy Astronaut Wings (1965), 2 Navy Distinguished Service Medals, 3 Navy Distinguished Flying Crosses, the Georgia Tech Distinguished Young Alumni Award (1965), Distinguished Service Alumni Award (1972), the Exceptional Engineering Achievement Award (1985), the Academy of Distinguished Engineering Alumni (1994), and the American Astronautical Society Space Flight Award (1993), Distinguished Executive Award (1998), Rotary National Space Achievement Award (2000). Inducted into 6 Aviation and Astronaut Halls of Fame. Recipient of more than 80 other major awards, including 6 honorary doctorate degrees.

NAVY EXPERIENCE: Upon graduation from Georgia Tech, Young entered the United States Navy. After serving on the west coast destroyer USS LAWS (DD-558) in the Korean War, he was sent to flight training. He was then assigned to Fighter Squadron 103 for 4 years, flying Cougars and Crusaders.

After test pilot training at the U.S. Navy Test Pilot School in 1959, he was assigned to the Naval Air Test Center for 3 years. His test projects included evaluations of the Crusader and Phantom fighter weapons systems. In 1962, he set world time-to-climb records to 3,000-meter and 25,000-meter altitudes in the Phantom. Prior to reporting to NASA, he was maintenance officer of Phantom Fighter Squadron 143. Young retired from the Navy as a Captain in September 1976, after completing 25 years of active military service.

NASA EXPERIENCE: In September 1962, Young was selected as an astronaut. He is the first person to fly in space six times from earth, and seven times counting his lunar liftoff. The first flight was with Gus Grissom in Gemini 3, the first manned Gemini mission, on March 23, 1965. This was a complete end-to-end test of the Gemini spacecraft, during which Gus accomplished the first manual change of orbit altitude and plane and the first lifting reentry, and Young operated the first computer on a manned spacecraft. On Gemini 10, July 18-21, 1966, Young, as Commander, and Mike Collins, as Pilot, completed a dual rendezvous with two separate Agena target vehicles. While Young flew close formation on the second Agena, Mike Collins did an extravehicular transfer to retrieve a micro meteorite detector from that Agena. On his third flight, May 18-26, 1969, Young was Command Module Pilot of Apollo 10. Tom Stafford and Gene Cernan were also on this mission which orbited the Moon, completed a lunar rendezvous, and tracked proposed lunar landing sites. His fourth space flight, Apollo 16, April 16-27, 1972, was a lunar exploration mission, with Young as Spacecraft Commander, and Ken Mattingly and Charlie Duke. Young and Duke set up scientific equipment and explored the lunar highlands at Descartes. They collected 200 pounds of rocks and drove over 16 miles in the lunar rover on three separate geology traverses.

Young’s fifth flight was as Spacecraft Commander of STS-1, the first flight of the Space Shuttle, April 12-14, 1981, with Bob Crippen as Pilot. The 54-1/2 hour, 36-orbit mission verified Space Shuttle systems performance during launch, on orbit, and entry. Tests of the Orbiter Columbia included evaluation of mechanical systems including the payload bay doors, the attitude and maneuvering rocket thrusters, guidance and navigation systems, and Orbiter/crew compatibility. One hundred and thirty three of the mission’s flight test objectives were accomplished. The Orbiter Columbia was the first manned spaceship tested during ascent, on orbit, and entry without benefit of previous unmanned missions. Columbia was also the first winged reentry vehicle to return from space to a runway landing. It weighed about 98 tons as Young landed it on the dry lakebed at Edwards Air Force Base, California.

Young’s sixth flight was as Spacecraft Commander of STS-9, the first Spacelab mission, November 28-December 8, 1983, with Pilot Brewster Shaw, Mission Specialists Bob Parker and Owen Garriott, and Payload Specialists Byron Lichtenberg of the USA and Ulf Merbold of West Germany. The mission successfully completed all 94 of its flight test objectives. For ten days the 6-man crew worked 12-hour shifts around-the-clock, performing more than 70 experiments in the fields of atmospheric physics, Earth observations, space plasma physics, astronomy and solar physics, materials processing and life sciences. The mission returned more scientific and technical data than all the previous Apollo and Skylab missions put together. The Spacelab was brought back for re-use, so that Columbia weighed over 110 tons as Young landed the spaceship at Edwards Air Force Base, California.

Young was also on five backup space flight crews: backup pilot in Gemini 6, backup command module pilot for the second Apollo mission (before the Apollo Program fire) and Apollo 7, and backup spacecraft commander for Apollo 13 and 17. In preparation for prime and backup crew positions on eleven space flights, Young has put more than 15,000 hours into training so far, mostly in simulators and simulations.

He has logged more than 15,275 hours flying time in props, jets, helicopters, rocket jets, more than 9,200 hours in T-38s, and six space flights of 835 hours.

In January 1973, Young was made Chief of the Space Shuttle Branch of the Astronaut Office, providing operational and engineering astronaut support for the design and development of the Space Shuttle. In January 1974, he was selected to be Chief of the Astronaut Office, with responsibility for the coordination, scheduling, and control of activities of the astronauts. Young served as Chief of the Astronaut Office until May 1987. During his tenure, astronaut flight crews participated in the Apollo-Soyuz joint American-Russian docking mission, the Space Shuttle Orbiter Approach and Landing Test Program, and 25 Space Shuttle missions. From May 1987 to February 1996, Young served as Special Assistant to the Director of JSC for Engineering, Operations, and Safety. In that position, he had direct access to the Center Director and other senior managers in defining and resolving issues affecting the continued safe operation of the Space Shuttle. Additionally, he assisted the Center Director in providing advice and counsel on engineering, operational, and safety matters related to the Space Station, Shuttle upgrades, and advanced human Space Exploration Programs, back to the Moon and on to Mars.

In February 1996 Young was assigned as Associate Director (Technical), responsible for technical, operational and safety oversight of all Agency Programs and activities assigned to the Johnson Space Center. On December 31, 2004 Young retired from NASA. He continues to advocate the development of the technologies that will allow us to live and work on the Moon and Mars. Those technologies over the long (or short) haul will save civilization on Earth.

— The official biography of John W. Young from the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas 77058 .