Tag Archives: Test Pilot

14 September 1962

Major Fitzhugh L. Fulton, Jr., U.S. Air Force, in the cockpit of a Convair B-58A Hustler Mach 2+ strategic bomber. (U.S. Air Force)

14 September 1962: At Edwards Air Force Base, in the high desert of southern California, Major Fitzhugh L. Fulton, Jr., United States Air Force, with Captain William R. Payne, USAF, and civilian flight test engineer C.R. Haines, flew a Convair B-58A-10-CF Hustler, serial number 59-2456, to a record 26,017.93 meters (85,360.66 feet) while carrying a 5,000 kilogram payload. This set a Fédération Aéronautique Internationale (FAI) World Record for Altitude in both the 2,000 kilogram (4,409.25 pounds) ¹ and 5,000 kilogram (11,023.11 pounds) ² classes.

Left to right, Major Fitzhugh L. Fulton, Jr., USAF, Captain William R. Payne, USAF, and civilian flight test engineer C.R. Haines. (FAI)
Left to right, Major Fitzhugh L. Fulton, Jr., USAF, Captain William R. Payne, USAF, and civilian flight test engineer C.R. Haines. (FAI)
Fitzhugh L. Fulton, Jr., 1942.

Fitzhugh Lee Fulton, Jr., was born 6 June 1925 at Blakeley, Georgia. He was the son of Fitzhugh Lee Fulton and Manila T. Fulton. He graduated from Columbus High School, Columbus, Georgia, in 1942. He later studied at Auburn University, Auburn, Alabama, and the University of Oklahoma, Norman, Oklahoma (just south of Oklahoma City). he graduated from Golden Gate University, San Francisco, California.

Fitz Fulton married Miss Erma I. Beck at Tucson, Arizona, 16 December 1945.

He entered the U.S. Army Air Corps in 1943. He flew the Douglas C-54 Skymaster transport during the Berlin Airlift and Douglas B-26 Invaders during the Korean War. Fulton graduated from the Air Force Experimental Test Pilot School in 1952. He served as project test pilot for the Convair B-58 Hustler supersonic bomber. At Edwards AFB, he flew the B-52 “motherships” for the X-15 Program. He flew the North American XB-70A Valkyrie to more than Mach 3. When Fulton retired from the Air Force in 1966, he was a lieutenant colonel assigned as Chief of Bomber and Transport Test Operations.

Fitz Fulton continued as a test pilot for NASA, flying as project pilot for the YF-12A and YF-12C research program. He flew all the early test flights of the NASA/Boeing 747 Shuttle Carrier Aircraft and carried the space shuttle prototype, Enterprise. By the time he had retired from NASA, Fulton had flown more than 16,000 hours in 235 aircraft types.

Fitzhugh Lee Fulton, Jr., died at Thousand Oaks, California, 4 February 2015, at the age of 89 years.

Convair B-58A-10-CF Hustler 59-2456 with a full weapons load. Major Fitzhugh L. Fulton, U.S. Air Force, flew this Mach 2+ strategic bomber to an altitude of 16.2 miles (26 kilometers) over Edwards Air Force Base, California, 14 September 1962. (U.S. Air Force)

The B-58 Hustler was a high-altitude Mach 2 strategic bomber which served with the United States Air Force from 1960 to 1970. It was crewed by a pilot, navigator/bombardier and a defensive systems operator located in individual cockpits. The aircraft is a delta-winged configuration similar to the Convair F-102A Delta Dagger and F-106 Delta Dart supersonic interceptors.

The Hustler is 96 feet, 10 inches (29.515 meters) long, with a wing span of 56 feet, 10 inches (17.323 meters) and an overall height of 31 feet 5 inches (9.576 meters). The wing’s leading edge is swept back at a 60° angle and the fuselage incorporates the “area rule” which resulted in a “wasp waist” or “Coke bottle” shape for a significant reduction in aerodynamic drag. The airplane’s only control surfaces are two “elevons” and a rudder, and there are no flaps.

The B-58A was powered by four General Electric J79-GE-5 axial-flow afterburning turbojet engines, suspended under the wings from pylons. This was a single-shaft engine with a 17-stage compressor and 3-stage turbine, rated at 10,300 pounds of thrust (45.82 kilonewtons), and 15,600 pounds (69.39 kilonewtons) with afterburner. The J79-GE-5 was 16 feet, 10.2 inches (5.136 meters) long and 3 feet, 2.0 inches (0.965 meters) in diameter.

The bomber had a cruise speed of 610 miles per hour (981.7 kilometers per hour) and a maximum speed of 1,325 miles per hour (2,132.4 kilometers per hour). The service ceiling is 64,800 feet (19,751 meters). Unrefueled range is 4,400 miles (7,081 kilometers). Maximum weight is 168,000 pounds (76,203.5 kilograms).

The B-58 weapons load was a combination of a W-39 warhead, and/or Mk.43 or B61 nuclear bombs. The W-39 warhead, the same used with the Redstone IRBM or Snark cruise missile, was carried in a jettisonable centerline pod, which also carried fuel for the aircraft. The smaller bombs were carried on underwing hardpoints. For defense, there was a General Electric M61 Vulcan 20×102 mm six-barreled rotary cannon mounted in the tail, with 1,200 rounds of linked ammunition, controlled by the Defensive Systems Officer.

Convair B-58A-10-CF 59-2456 was assigned to the 43rd Bombardment Wing at Carswell Air Force Base, Texas until 1969 when it was placed in storage at Davis-Monthan Air Force Base, Tucson, Arizona, 9 December 1969. The record-setting strategic bomber was scrapped 1 June 1977.

FAI altitiude record setting Convair B-58A-10-CF 59-2456, showing the bomber's weapons capability. (U.S. Air Force)
FAI altitude record setting Convair B-58A-10-CF 59-2456, showing the bomber’s weapons capability. Major Fitzhugh L. Fulton, U.S. Air Force, flew this Mach 2+ strategic bomber to an altitude of 16.2 miles (26 kilometers) over Edwards Air Force Base, California, 14 September 1962. (U.S. Air Force)

¹ FAI Record File Number 14656

² FAI Record File Number 14652

© 2017, Bryan R. Swopes

11 September 1946

North American Aviation XFJ-1 Fury. (North American Aviation, Inc.)

11 September 1946:¹ North American Aviation engineering test pilot Wallace Addison (“Wally”) Lien made the first flight of the North American Aviation XFJ-1, Bu. No. 39053. He flew from Mines Field (now, better known as LAX), to Muroc Army Airfield in the high desert of southern California.

Wallace A. Lien

Six months, fifteen days earlier, Lien had made the first flight of the prototype Republic XP-84.)

The XFJ-1 was a turbojet-powered day fighter designed for operation from the United States Navy’s aircraft carriers. It was a single-place, single-engine, low-wing monoplane with retractable tricycle landing gear. The airplane’s wings and tail surfaces were very similar to those of North American’s legendary P-51 Mustang.

Although intended for carriers, the FJ-1 did not have folding wings to reduce its “footprint” when stored on the hangar deck. It did have an interesting feature, though: The nose gear assembly was capable of “kneeling,” putting the airplane in a nose-low, tail-high attitude, allowing Furies to be placed very close together when parked nose-to-tail.

North American Aviation XFJ-1 (North American Aviation, Inc./Curtiss Aldrich Collection, 1000aircraftphotos.com)

The XFJ-1 Fury was 34 feet, 6–3/16 inches (10.520 meters) long, with a wingspan of 38 feet, 2–9/32 inches (11.640 meters), and overall height of 14 feet, 10½ inches (4.534 meters). With the jettisonable wingtip fuel tanks installed, the wingspan was 40 feet, 11-3/8 inches 12.481( meters). The leading edge of each wing was swept aft 3° 40′. The total wing area was 274.88 square feet (25.54 square meters). The wings had an angle of incidence of 1° with 2° 30′ of negative twist. There was 3° dihedral. The horizontal stabilizer had a span of 17 feet, 7 inches (5.539 meters), with an angle of incidence of –1° and 10° dihedral. The vertical fin had 0° offset from the fuselage centerline.

The XFJ-1 had an empty weight of 9,009 pounds (4,086 kilograms) and gross weight of 12,288 pounds (5,574 kilograms).

The XFJ-1 was powered by a prototype General Electric TG-180 (J35-GE-2) axial-flow turbojet engine. The J35-GE-2 used an 11-stage compressor, 8 combustion chambers, and a single-stage turbine. It was rated at 3,750 pounds of thrust (16.68 kilonewtons) at 7,700 r.p.m. The engine was 14 feet, 0 inches (4.267 meters) long, 40 inches (1.016 meters) in diameter, and weighed 2,455 pounds (1,114 kilograms). Production engines were built by Allison (J35-A-5 and -A-7) and by Chevrolet (J35-C-3).

General Electric TG-180 axial-flow turbojet engine. (General Electric)

The production FJ-1 Fury was limited to a maximum speed of 415 knots (478 miles per hour/769 kilometers per hour), and when above 10,000 feet (3,048 meters), to 0.75 Mach. The service ceiling was 32,000 feet (9,754 meters).

The FJ-1 Fury had three self-sealing fuel tanks in the fuselage totaling 465 gallons (1,760 liters). The wingtip tanks had a capacity of 170 gallons (644 liters), each. The total capacity was 805 U.S. gallons (3,047 liters) of JF-1 kerosene.

North American Aviation XFJ-1 with wingtip tanks. (North American Aviation, Inc.)

The XFJ-1 Fury was armed with six air-cooled Browning .50-caliber machine guns, with 250 rounds of ammunition per gun.

North American Aviation built three XFJ-1 prototypes and thirty production FJ-1 Fury fighters. The aircraft underwent a major redesign to become the XP-86 Sabre for the U.S. Air Force, and the FJ-2 Fury for the Navy and Marine Corps.

North American Aviation XFJ-2B Fury prototype Bu. No. 133756 climbs out after takeoff from Los Angeles International Airport, 27 December 1951. (San Diego Air and Space Museum Archive)

Wallace Addison Lien was born 13 August 1915, at Alkabo, North Dakota. He was the second of six children of Olaf Paulson Lien, a Norwegian immigrant and well contractor, and Elma Laura Richardson Lien.

Wallace A. Lien (The 1939 Gopher)

Wally Lien graduated from the University of Minnesota Institute of Technology 17 June 1939 with a Bachelor’s Degree in Mechanical Engineering (B.M.E.). He was a president of the Pi Tau Sigma (ΠΤΣ) fraternity, a member of the university’s cooperative book store board, and a member of the American Society of Mechanical Engineers (A.S.M.E.). He later studied at the California Institute of Technology (CalTech) at Pasadena, California, and earned a master’s degree in aeronautical engineering.

Lien worked as a an engineer at a steel sheet mill in Pennsylvania. He enlisted in the the United States Army at Pittsburgh, Pennsylvania, 18 February 1941. He was accepted as an aviation cadet at Will Rogers Field, Oklahoma City, Oklahoma, 11 November 1941. 26 years old, Lien was 6 feet, 2 inches (1.88 meters) tall and weighed 174 pounds (79 kilograms).

During World War II, Lien remained in the United States, where he served as a test pilot at Wright Field, Dayton, Ohio. He conducted flight tests of the Bell YP-59A Airacomet and the Lockheed XP-80 Shooting Star. Having reached the rank of Major, he left the Air Corps, 16 February 1946. He then went to work for the Republic Aviation Corporation as a test pilot, and North American Aviation.

Wallace Addison Lien married Miss Idella Muir at Elizabeth, New Jersey, 26 December 1946. They would have two sons, Robert and Steven.

Wallace Addison Lien died 28 October 1994 at Colorado Springs, Colorado, at the age of 79 years. He was buried at the Shrine of Remembrance Veterans Honor Court, Colorado Springs, Colorado.

¹ Sources very, with some stating 12 September or 27 November 1946.

© 2018, Bryan R. Swopes

 

10 September 1956

North American Aviation North American Aviation F-107A S/N 55-5118 rolling out at Edwards Air Force base. (U.S. Air Force)
North American Aviation F-107A S/N 55-5118 rolling out at Edwards Air Force Base. (U.S. Air Force)
Joel Robert Baker (1920–2011). (Photograph courtesy of Neil Corbett)
Joel Robert Baker (1920–2011). (Photograph courtesy of Neil Corbett)

10 September 1956: North American Aviation test pilot Joel Robert (“Bob”) Baker made the first flight of the F-107A-NA 55-5118, a pre-production tactical fighter bomber, reaching a speed of Mach 1.03. On landing the drogue parachute did not deploy and due to the high speed on rollout, the nose gear strut collapsed, causing minor damage to the new aircraft.

The F-107A was designed as a Mach 2+ fighter bomber capable of carrying nuclear weapons. The plan to carry a Mark 7 bomb in a centerline recess in the aircraft’s belly resulted in the radical appearance of the airplane, with the engine intake mounted above and behind the cockpit.

Based on the F-100 Super Sabre, it was originally designated F-100B, but this was changed to F-107A prior to the first flight.

The North American Aviation F-107A was a single-seat, single-engine supersonic fighter bomber. It was equipped with a very sophisticated stability augmentation system. The F-107A was 61 feet, 10 inches  (18.847 meters) long with a wingspan of 36 feet, 7 inches (11.151 meters) and height of 19 feet, 8 inches (5.994 meters). Its empty weight was 22,696 pounds (10.295 kilograms) and had a maximum takeoff weight of 41,537 pounds (18,841 kilograms).

The airplane was powered by a Pratt & Whitney YJ75-P-11 afterburning turbojet which produced a maximum 24,500 pounds of thrust (108.98 kilonewtons).

This gave the F-107A a maximum speed of 890 miles per hour (1,432 kilometers per hour) at Sea Level, and 1,295 miles per hour (2,084 kilometers per hour) at 36,000 feet (10,973 meters). It could climb at an initial rate of 39,900 feet per minute (202.7 meters per second) and had a service ceiling of 53,200 feet (16,215 meters).

North American Aviation F-107A 55-5118 in flight. (U.S. Air Force)
North American Aviation F-107A 55-5118 in flight. (U.S. Air Force)

The Mark 7 was a variable-yield fission bomb that could be pre-set to detonate with ranges between 8 and 61 kilotons. It weighed approximately 1,700 pounds (771 kilograms).

The second F-107A, 55-5119, was the weapons test aircraft and was armed with four 20mm M39 cannon with 200 rounds per gun.

The F-107A was in competition with Republic’s F-105 Thunderchief, which was selected by the Air Force for production. Only three F-107A test aircraft were built.

After Air Force testing, two F-107s, 55-5118 and 55-5120, were turned over to the NACA High-Speed Flight Station for use as research aircraft. John Barron (“Jack”) McKay was assigned as the project pilot. 55-5118 made only 4 flights for NACA before being grounded. 55-5120 made 42 flights.

Today, 55-5118 is at the Pima Air and Space Museum, Tucson, Arizona. Its sister ship, 55-5119, is at the National Museum of the United States Air Force, Wright-Patterson AFB, Ohio. The third airplane, 55-5120, was damaged on takeoff with test pilot Scott Crossfield in the cockpit, 1 September 1959. It was not repaired.

The second F-107A, 55-5119, turns from downwind to base leg for landing on Runway 4, Edwards Air Force Base. This was the only one of the three prototypes to be equipped with 20 mm M39 cannon.(U.S. Air Force)
The first XF-107, 118 arrives at HSFS, 6 November 1957. (NASA E-57-3192)

© 2015, Bryan R. Swopes

8 September 1954

Albert Scott Crossfield, NACA Test Pilot. (LIFE Magazine via Jet Pilot Overseas)
Albert Scott Crossfield, NACA Test Pilot. (Allan Grant/LIFE Magazine)

8 September 1954: Scott Crossfield, a NACA Aeronautical Research Pilot at the High Speed Flight Station, Edwards Air Force Base, California, took the North American Aviation F-100A-5-NA Super Sabre, 52-5778, on its first NACA test flight—and his first flight in an F-100.

Tests of the prototype and early production Super Sabres revealed directional stability problems, a very dangerous inertia coupling characteristic that could cause the aircraft to go violently out of control (and which would result in the death of North American’s chief test pilot, George Welch, in just another three weeks). The highly swept wings could stall at high angles of attack, causing the airplane to pitch up in the deadly “Sabre dance.” NACA wanted to explore the causes of these aerodynamic problems and design solutions.

Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge "slats". (LIFE Magazine via Jet Pilot Overseas.)
Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge “slats”. (Allan Grant/LIFE Magazine)

During the flight there was an engine fire warning and Crossfield shut down the Pratt & Whitney J57-P-7 turbojet engine. The F-100A had no flaps and North American’s own test pilots did not think a “dead stick” landing was possible due the very high landing speed required.

Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (Allan Grant/LIFE Magazine)

Scott Crossfield tells the story in his autobiography:

. . . As a matter of fact, North American tests pilots were then flipping coins to see who would bring an F-100 in dead-stick to fulfill a requirement of the Air Force acceptance tests. I was not concerned. Dead-stick landings in low L-over-D [Lift-over-Drag] airplanes were my specialty. Every test pilot develops a strong point. I was certain that my talent lay in dead-stick landings.

With the engine idling and generating no energy to the plane’s systems, I was running out of hydraulic pressure to operate the controls. Following the handbook instructions, I pulled a lever which extended a miniature “windmill” into the slipstream. This “windmill” churned, building up pressure in the hydraulic lines. Unknown to me, there was a major leak in the line. The windmill was not helping, but hurting me. It was pumping hydraulic fluid overboard as fast as it could turn.

Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (Allan Grant/LIFE Magazine)

I called Edwards tower and declared an emergency. All airborne planes in the vicinity of the base were warned away from the lake area. I held the ailing F-100 on course, dropping swiftly, following the glide path that I used for the dead-stick Skyrocket. [Douglas D-558-II Skyrocket] I flared out and touched down smoothly. It was one of the best landings I have ever made, in fact. Seconds later, while the F-100 was rolling out, the remaining bit of hydraulic pressure in the control lines drained out and the controls froze.

I then proceeded to violate a cardinal rule of aviation: never try tricks with a compromised airplane. The F-100 was still rolling at a fast clip, coming up fast on the NACA ramp, when I made my poor decision. I had already achieved the exceptional, now I would end it with a flourish, a spectacular wind-up. I would snake the stricken F-100 right up the ramp and bring it to a stop immediately in front of the NACA hangar. This trick, which I had performed so often in the Skyrocket, was a fine touch. After the first successful dead-stick landing in an F-100, it would be fitting.

Instrument panel of a North American Aviation F-100 Super Sabre. (U.S. Air Force)
Instrument panel of a North American Aviation F-100 Super Sabre. The fire warning light and hydraulic pressure gauge are at the upper right corner. (U.S. Air Force)

According to the F-100 handbook, the hydraulic brake system—a separate hydraulic system from the controls—was good for three “cycles,” engine out. This means three pumps on the brake, and that proved exactly right. The F-100 was moving at about fifteen miles an hour when I turned up the ramp. I hit the brakes once, twice, three times. The plane slowed, but not quite enough. I was still inching ahead ponderously, like a diesel locomotive. I hit the brakes a fourth time—and my foot went clear to the floorboards. The hydraulic fluid was exhausted. The F-100 rolled on, straight between the yawning hangar doors!

The good Lord was watching over me—partially anyhow. The NACA hangar was then crowded with expensive research tools—the Skyrocket, all the X-1 series, the X-3, X-4 and X-5. Yet somehow, my plane, refusing to halt, squeezed by them all and bored steadily on toward the side wall of the hangar.


The nose of the F-100 crunched through the corrugated aluminum, punching out an eight-inch steel I-beam. I was lucky. Had the nose bopped three feet to the left or right, the results could have been catastrophic. Hitting to the right, I would have set off the hangar fire-deluge system, flooding the hangar with 50,000 barrels of water and ruining all the expensive airplanes. Hitting to the left, I would have dislodged a 25-ton hangar-door counterweight, bringing it down on the F-100 cockpit, and doubtless ruining Crossfield.

Chuck Yeager never let me forget the incident. He drew many laughs at congregations of pilots by opening his talk: “Well, the sonic wall was mine. The hangar wall was Crossfield’s.” That’s the way it was at Edwards. Hero one minute, bum the next. That I was the first pilot to land an F-100 dead-stick successfully, and memorized elaborate and complete instrument data on the engine failure besides, was soon forgotten.

The F-100 is a tough bird. Within a month NACA’s plane was flying again, with Crossfield back at the helm. In the next few weeks I flew forty-five grueling flights in the airplane, pushing it to the limits, precisely defining the roll coupling. (On one flight the coupling was so severe that it cracked a vertebra in my neck.) These data confirmed, in actual flight, the need for a new F-100 tail, which North American was planning to install on later models of the airplane.

Every night after landing, I taxied the F-100 slowly to the NACA ramp. At the bottom, placed there on orders of Walt Williams, there was a large new sign, symbolic of the new atmosphere at Edwards. It said:

PLEASE COME TO A COMPLETE STOP BEFORE TAXIING UP RAMP 

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 20 at Pages 196–199.

North American F-100A-5-NA Super Sabre parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on the ramp in front of the NACA hangar, Edwards Air Force Base, California, 1959. (NASA)
North American F-100A Super Sabre on the ramp near the NACA High-Speed Flight Station in 1957. (NASA)
NACA High Speed Flight Station, 24 August 1954. The Boeing P2B-1S Superfortress is parked at the northeast corner of the ramp. (NASA DFRC E54-1361)

© 2017, Bryan R. Swopes

7 September 1997

Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)
Lockheed Martin F-22A 91-4001 lands at Dobbins ARB after its first flight, 7 September 1997. (AP/The Hindu)

7 September 1997: At 10:18 a.m., Lockheed Martin Aeronautics Company Chief Test Pilot Alfred P. (“Paul”) Metz took off from Dobbins Air Reserve Base, Marietta, Georgia, flying the first F-22A Block 1 Engineering and Manufacturing Development Prototype, c/n 4001, call sign, “Raptor 01.” The new air superiority “stealth” fighter flew for just under one hour, reaching an altitude of 20,000 feet (6,096 meters). Metz was accompanied by two F-16 chase planes.

Previously employed by Northrop Corporation, in 1990, Paul Metz had also made the first flight of the Raptor’s rival, the YF-23A Advanced Tactical Fighter prototype.

Test pilot Paul Metz with teh second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California.
Test pilot Paul Metz with the second F-22A EMD prototype, 91-4002, at Edwards Air Force Base, California. (U.S. Air Force)

Alfred Paul Metz was born 21 June 1946 at Springfield, Ohio. In 1968, he graduated form Ohio State University, Columbus, Ohio, with a bachelor’s degree in aeronautical engineering.

Metz entered the U.S. Air Force in 1968. He flew 68 combat missions during the Vietnam War as a pilot of the Republic F-105G Thunderchief (“Wild Weasel”), assigned to the 17th Wild Weasel Squadron, 388th Tactical Fighter Wing, based at Korat Royal Thai Air Force Base, Thailand. He was twice awarded the Distinguished Flying Cross.

Metz graduated from the Air Force Test Pilot School at Edwards Air Force Base, California, in 1976, and remained at Edwards for the next two years. He was then assigned as an instructor at the U.S. Navy Test Pilot School at NATC Patuxent River, Maryland, in 1978.

Metz left the Air Force in 1980 and joined Northrop Aircraft as an engineering test pilot. He became Northrop’s chief test pilot in 1985. After flying as an engineering test pilot for the B-2 stealth bomber, Paul Metz joined Lockheed Martin’s F-22 program in 1992.

Paul Metz continued testing the F-22A for four years before joining the F-35 Joint Strike Fighter program. He was next appointed Vice President for Flight Test. Metz retired in 2006.

A Lockheed Martin F-22A Raptor in flight. (Wikipedia)
A Lockheed Martin F-22A Raptor in flight. (Wikipedia)

The Lockheed Martin F-22A Raptor is a single-seat, twin-engine fighter designed with stealth technology. It is 62 feet, 1 inch (18.923 meters) long with a wingspan of 44 feet, 6 inches (13.564 meters) and height of 16 feet, 8 inches (5.080 meters). The fighter has an empty weight of 43,340 pounds (19,659 kilograms) and a maximum takeoff weight of 83,500 pounds (37,875 kilograms).

The F-22 is powered by two Pratt & Whitney F119-PW-100 afterburning turbofan engines which incorporate thrust vectoring exhaust nozzles to enhance the fighter’s maneuverability.

The F-22A can cruise at Mach 1.82 and has a maximum speed of Mach 2.25. Its service ceiling is greater than 65,000 feet (19,812 meters) and the combat radius is 470 miles (756 kilometers).

The fighter is armed with a 20 mm M61A2 Vulcan 6-barrel cannon with 480 rounds of ammunition, and can carry AIM-9 Sidewinder and AIM-120 AMRAAM air-to-air missiles. The F-22 can also be configured for ground attack.

The F-22A entered service with the U.S. Air Force in 2003, with “initial operational capability” achieved in 2005. Including flight test aircraft, 195 F-22s were produced before the program prematurely ended in 2012.

In 2000, 91-4001 was removed from flight status and used to test battle damage survivability.

The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)
The stripped air frame of 91-4001 at Hill AFB, Utah. (f-16.net)

© 2018, Bryan R. Swopes