Tag Archives: Test Pilot

28 August 1957

English Electric Canberra B Mk.2 WK163 climbing under rocket power. (Institution of Mechanical Engineers)
English Electric Canberra B Mk.2 WK163 climbing under rocket power. (Institution of Mechanical Engineers)

28 August 1957: Michael Randrup, Chief Test Pilot of D. Napier and Son, Ltd., and Walter Shirley, Deputy Chief Engineer, fly this Royal Air Force/English Electric Canberra B Mk.2, WK163, to an altitude of 21,430 meters (70,308 feet) over southern England.  This set a new Fédération Aéronautique Internationale (FAI) World Record for altitude.¹

WK163 with rocket engine installed in its bomb bay. (Institution of Mechanical Engineers)
WK163 with rocket engine installed in its bomb bay. (Institution of Mechanical Engineers)

The Canberra was being used to test Napier’s Double Scorpion NSc D1-2 rocket engine, which was used to drive the airplane far beyond its normal service ceiling of 48,000 feet (14,630 meters).

After taking off from Luton, Bedfordshire, at 5:26 p.m., Mike Randrup used the Canberra’s two 6,500-pounds-thrust (28.91 kilonewtons) Rolls-Royce Avon RA.3 Mk. 101 turbojet engines to climb to 44,000 feet (13,411 meters), where he throttled the engines back to cruising r.p.m. and then ignited the Double Scorpion. The Canberra climbed at a very steep angle until reaching the peak altitude.

English Electric Canberra B Mk.2 WK163. (Institution of Mechanical Engineers)
English Electric Canberra B Mk.2 WK163. (Institution of Mechanical Engineers)

At this high altitude, there is an extremely narrow margin between the airplane’s stall speed and it’s critical Mach number—the point at which supersonic shock waves start to form on the wings and fuselage. On an Airspeed Limitations Chart, this area is known as “Coffin Corner.” Aerodynamicists had calculated that Randrup needed to keep the Canberra within a 15-knot range of airspeed.

Though the Canberra’s cockpit was pressurized, both Mike Randrup and Walter Shirley wore pressure suits in case of emergency.

WK163 landed back at Luton at 6:12 p.m.

Flight of Canberra WK163, 27 August 1957. (Flight)

In 1958, the Royal Aero Club of Great Britain awarded the Britannia Trophy to Randrup and Shirley.

The English Electric Canberra B.2 was the first production variant of a twin-engine, turbojet powered light bomber. The bomber was operated by a pilot, navigator and bombardier. It was designed to operate at very high altitudes. The Canberra B.2 was 65 feet, 6 inches (19.964 meters) long with a wingspan of 64 feet, 0 inches (19.507 meters) and height of 15 feet, 7 inches (4.750 meters). The wing used a symmetrical airfoil and had 2° angle of incidence. The inner wing had 2° dihedral, and the outer wing, 4° 21′. The total wing area was 960 square feet (89.2 square meters). The variable-incidence tail plane ad 10° dihedral. The airplane’s maximum takeoff weight was 46,000 pounds ( kilograms).

The Canberra B.2 was powered by two Rolls-Royce Avon RA.3 Mk. 101 engines. The RA.3 was a single-spool axial-flow turbojet with a 12-stage compressor section and single-stage turbine. It was rated at 6,500-pounds-thrust (28.91 kilonewtons).

The B.2 had a maximum speed of 450 knots (518 miles per hour/833 kilometers per hour). It was restricted to a maximum 0.75 Mach from Sea Level to 15,000 feet (4,572 meters), and 0.79 Mach from 15,000 to 25,000 feet (7.620 meters). Above that altitude the speed was not restricted, but pilots were warned that they could expect compressibility effects at 0.82 Mach or higher.

The Canberra was produced in bomber, intruder, photo reconnaissance, electronic countermeasures and trainer variants by English Electric, Handley Page, A.V. Roe, and Short Brothers and Harland. In the United States, a licensed version, the B-57A Canberra, was built by the Glenn L. Martin Company. The various versions were operated by nearly 20 nations. The Canberra was the United Kingdom’s only jet-powered bomber for four years. The last one in RAF service, a Canberra PR.9, made its final flight on 28 July 2006.

WK163 was built under license by A.V. Roe at Woodford, Cheshire, in 1954, and accepted by the Royal Air Force 28 January 1955. Having spent its entire career as a research test bed, WK163 was declared surplus in 1994 and sold at auction to Classic Air Projects Ltd. It was assigned civil registration G-BVWC.

English Electric Canberra B Mk.2 WK163, 1997. (Mike Freer/Wikipedia)

G-BVWC last flew in 2007. As of December 2016, the record-setting Canberra was undergoing a full restoration at Robin Hood Airport, near Doncaster, South Yorkshire.

English Electric Canberra B2 WK163 (G-BVWC). (Tony Hisgett, via Wikipedia)
English Electric Canberra B Mk.2 WK163, civil registration G-BVWC. The record-setting airplane has been painted in the standard Bomber Command scheme with markings of No. 617 Squadron. (Tony Hisgett, via Wikipedia)

Michael Randrup was born in Moscow, Imperial Russia, 20 April 1913. He was one of four children of Søren Revsgaard Randrup and Alexandra Pyatkova Randrup. He held Danish citizenship through his father, who had emigrated to Russia in 1899. Following the Russian revolution, the Randrup family relocated to England.

Michael was educated at The King’s School in Canterbury, Kent. He became interested in aviation in his early teens, and took his first flight as a passenger aboard an Avro 504K biplane. He began flight lessons at Bekesbourne Aerodrome in 1935, and soloed in June 1936. Randrup applied to join the Royal Air Force but was turned down because of his Danish citizenship. He then went to the Automobile Engineering College in Chelsea, West London, to study aeronautical engineering.

Randrup graduated in 1939, and along with a cousin, Ivan Christian Randrup, formed a small air charter company, AllFlights Ltd., at Heston Aerodrome, west of London. They operated a de Havilland DH.85 Leopard Moth, de Havilland DH.90 Dragonfly, and a Heston Type I Phoenix II (G-AEYX). The Phoenix was impressed into service by the R.A.F., 5 March 1940.

World War II bought their fledgling company to a close. (Ivan Randrup briefly flew for B.O.A.C. before going on to the Air Transport Auxiliary. First Officer Randrup died 29 January 1941.)

After Denmark fell to Nazi Germany in April 1940, Michael Randrup was accepted by the R.A.F. He received a commission as a Pilot Officer on probation, Royal Air Force Volunteer Reserve, 4 September 1940. One year later he was promoted to Flying Officer.

On completion of his military flight training, Pilot Officer Randrup was sent to a flying instructors school. For the next two years, he served as a military flight instructor in England and Southern Rhodesia. In 1942, Flying Officer Randrup was transferred from Training Command to Fighter Command and on 6 October, was assigned to No. 234 Squadron, then stationed at RAF Perranporth, flying the Supermarine Spitfire Vc. A number of Danish pilots had been assigned to No. 234. On 1 January 1943, Randrup was seconded to Air Service Training, Ltd., at Hamble, just southeast of Southampton, where he flight-tested new-production, repaired and overhauled Spitfire fighters.

In 1944, Randrup was assigned as a test pilot at the Royal Aircraft Establishment at Farnborough. Among other assignments, he flight-tested a captured Heinkel He 177 A-5/R-6 twin-engine heavy bomber. In 1945, Randrup was appointed Officer Commanding, Engine Research and Development Flight. By the end of the war, he had been promoted to the rank of Squadron Leader.

Following the war, Randrup went to work for D. Napier and Son Ltd. In 1946, he became the company’s Chief Test Pilot. The following year, he became a naturalized subject of the United Kingdom and the British Empire.

From 1966 until 1973, Randrup served as manager for the British Aircraft Corporation in Saudi Arabia. BAC provided aircraft and missiles to the Royal Saudi Air Force.

Michael Randrup was twice married, first to Florence May Dryden, and then to Betty Perry. They would have two children.

Michael Randrup died in February 1984 at the age of 70 years.

Walter Shirley, Napier Chief Development Engineer (left), and Michael Randrup, Chief Test Pilot, D. Napier and Son Ltd. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

Walter Shirley was educated at the Blackpool Grammar School, a private boarding school in Blackpool, Lancashire, and St. Catherine’s College, University of Cambridge.

Shirley was employed as a scientific officer at RAE Farnborough from 1942 to 1946. It was while there that he first flew as a flight test engineer with Squadron Leader Randrup. Shirley was sent to an R.A.F. flight school for pilot training. In 1946, he was assigned to rocket engine development.

Shirley joined Napier in 1947, working on turbine engines. In 1952, he was appointed Chief Technician. In 1956, Shirley was made the Chief Development Engineer for the Scorpion engine. He later became the company’s Deputy Chief Engineer.

Walter Shirley died in 1993.

The Britannia Trophy of the Royal Aero Club of Great Britain.

¹ FAI Record File Number 9843

© 2018, Bryan R. Swopes

27 August 1939

Illustration (or retouched photograph) of Heinkel He 178 V1 in flight with landing gear extended.
Erich Karl Warsitz, 1942

27 August 1939: Flugkapitän Erich Karl Warsitz, a Luftwaffe pilot assigned to the Ministry of Aviation (Reichsluftfahrtministerium) as a test pilot, made the first flight of the Heinkel He 178 V1, a proof-of-concept prototype jet-propelled airplane.

Heinkel Flugzeugwerke had built a small, single-seat, single-engine high-wing monoplane with retractable landing gear. The He 178 had the air intake at the nose and the engine exhaust out the tail, a configuration that would become the standard layout for most single-engine jet aircraft in the future. The airplane was constructed of wood and aluminum.

The He 178 V1 was 7.48 meters (24.54 feet) long, with a wingspan of 7.20 meters (23.62 feet) and height of 2.10 meters (6.89 feet). The wing area was 7.90 square meters (85.03 square feet). The prototype had an empty weight of 1,620 kilograms (3,572 pounds) and its gross weight was 1,998 kilograms (4,406 pounds).

Illustration of Heinkel He 178 V1 in flight with landing gear retracted.
Hans J. P. von Ohain

The airplane was powered by a Heinkel Strahltriebwerk HeS 3B turbojet engine, which had been designed by Hans Joachim Pabst von Ohain. The HeS 3B used a single-stage axial-flow inducer, single-stage centrifugal-flow compressor, reverse-flow combustor cans, and a single-stage radial-inflow turbine. The engine produced 1,102 pounds of thrust (4.902 kilonewtons) at 11,600 r.p.m., burning Diesel fuel. The engine’s maximum speed was 13,000 r.p.m. The HeS 3B was 1.480 meters (4.856 feet) long, 0.930 meters (3.051 feet) in diameter and weighed 360 kilograms (794 pounds).

Heinkel Strahltriebwerk HeS 3B engine, cutaway example. (Deutsches Museum)

The He 178 V1 was designed for a cruise speed of 580 kilometers per hour (360 miles per hour) and maximum speed of 700 kilometers per hour (435 miles per hour). During flight testing, the highest speed reached was 632 kilometers per hour (393 miles per hour). Its estimated range was 200 kilometers (124 miles).

Captain Warsitz made two short circuits of the airfield then came in for a landing. This was the very first flight of an aircraft powered only by a jet engine.

(Left to right) Erich Karl Warsitz, Ernst Heinrich Heinkel, and Hans Joachim Pabst von Ohain, at dinner party celebrating the first flight of the Heinkel He 178. (NASM)

The He 178 was placed in the Deutsches Technikmuseum in Berlin, Germany. It was destroyed during a bombing raid in 1943.

Illustration of a Heinkel He 178, front view, high oblique. This may be the second prototype, V2.
Illustration showing left profile of the Heinkel He 178 V1
Illustration showing left front quarter of the Heinkel He 178 V1. Note the open cockpit.
Heinkel He 178, left rear quarter. This may be the second prototype, V2.
Heinkel He 178, rear, high oblique. This may be the second prototype, V2.

© 2018, Bryan R. Swopes

Neil Alden Armstrong (5 August 1930–25 August 2012)

NEIL ALDEN ARMSTRONG (1930–2012)

The following is the official NASA biography:

National Aeronautics and Space Administration
John H. Glenn Research Center
Lewis Field
Cleveland, Ohio 44135

Neil A. Armstrong

Neil A. Armstrong, the first man to walk on the moon, was born in Wapakoneta, Ohio, on August 5, 1930. He began his NASA career in Ohio.

After serving as a naval aviator from 1949 to 1952, Armstrong joined the National Advisory Committee for Aeronautics (NACA) in 1955. His first assignment was with the NACA Lewis Research Center (now NASA Glenn) in Cleveland. Over the next 17 years, he was an engineer, test pilot, astronaut and administrator for NACA and its successor agency, the National Aeronautics and Space Administration (NASA).

As a research pilot at NASA’s Flight Research Center, Edwards, Calif., he was a project pilot on many pioneering high speed aircraft, including the well known, 4000-mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters and gliders.

Armstrong transferred to astronaut status in 1962. He was assigned as command pilot for the Gemini 8 mission. Gemini 8 was launched on March 16, 1966, and Armstrong performed the first successful docking of two vehicles in space.

As spacecraft commander for Apollo 11, the first manned lunar landing mission, Armstrong gained the distinction of being the first man to land a craft on the moon and first to step on its surface.

Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters, Washington, D.C. In this position, he was responsible for the coordination and management of overall NASA research and technology work related to aeronautics.

He was Professor of Aerospace Engineering at the University of Cincinnati between 1971-1979. During the years 1982-1992, Armstrong was chairman of Computing Technologies for Aviation, Inc., Charlottesville, Va.

He received a Bachelor of Science Degree in Aeronautical Engineering from Purdue University and a Master of Science in Aerospace Engineering from the University of Southern California. He holds honorary doctorates from a number of universities.

Armstrong is a Fellow of the Society of Experimental Test Pilots and the Royal Aeronautical Society; Honorary Fellow of the American Institute of Aeronautics and Astronautics, and the International Astronautics Federation.

He is a member of the National Academy of Engineering and the Academy of the Kingdom of Morocco. He served as a member of the National Commission on Space (1985-1986), as Vice-Chairman of the Presidential Commission on the Space Shuttle Challenger Accident (1986), and as Chairman of the Presidential Advisory Committee for the Peace Corps (1971-1973).

Armstrong has been decorated by 17 countries. He is the recipient of many special honors, including the Presidential Medal of Freedom; the Congressional Space Medal of Honor; the Explorers Club Medal; the Robert H. Goddard Memorial Trophy; the NASA Distinguished Service Medal; the Harmon International Aviation Trophy; the Royal Geographic Society’s Gold Medal; the Federation Aeronautique Internationale’s Gold Space Medal; the American Astronautical Society Flight Achievement Award; the Robert J. Collier Trophy; the AIAA Astronautics Award; the Octave Chanute Award; and the John J. Montgomery Award.

Armstrong passed away on Aug. 25, 2012 following complications resulting from cardiovascular procedures. He was 82.

The above official NASA biography is from the website:  http://www.nasa.gov/centers/glenn/about/bios/neilabio.html

“That’s one small step for man, one giant leap for mankind.” Astronaut Neil Armstrong steps onto the surface of The Moon, 20 July 1969. (NASA)

25 August 1947

Major Marion E. Carl, USN, with a Douglas D-558-I Skystreak at Muroc Dry Lake, 1947. (U.S. Navy)
Major Marion E. Carl, USMC, with a Douglas D-558-I Skystreak at Muroc Dry Lake, 1947. (U.S. Navy)

25 August 1947: Major Marion Eugene Carl, United States Marine Corps, flying the Douglas D-558-I Skystreak, Bu. No. 37970, set a new Fédération Aéronautique Internationale (FAI) World Record for Speed Over a 3 Kilometer Straight Course, averaging 1,047.356 kilometers per hour (650.797 miles per hour).¹ The Skystreak was flown over a course laid out on Muroc Dry Lake, site of Muroc Army Air Field (now Edwards Air Force Base) in the high desert of Southern California.

Douglas D-558-I Skystreak Bu. No. 37970 makes a pass over the 3 kilometer course on Muroc Dry Lake. (U.S. Navy)
Douglas D-558-I Skystreak Bu. No. 37970 makes a pass over the 3 kilometer course on Muroc Dry Lake. (U.S. Navy)

Four passes were made over the course at an altitude of 200 feet (61 meters) or lower. Two runs were made in each direction to compensate for any head or tail winds. The official speed for a record attempt was the average of the two best consecutive passes out of the four.

Major Carl’s record exceeded one set by Commander Turner F. Caldwell, Jr., U.S. Navy, just five days earlier by 10.053 miles per hour (16.178 kilometers per hour).

Major Marion E. Carl, USMC, and Commander Turner F. Caldwell, Jr., USN, stand with the record-setting Douglas D-558-I Skystreak, Bu. No. 37970, on Muroc Dry Lake. (U.S. Navy)

The D-558 Program was intended as a three phase test program for the U.S. Navy and the National Advisory Committee on Aeronautics (NACA) to investigate transonic and supersonic flight using straight and swept wing aircraft powered by turbojet and/or rocket engines. The Douglas Aircraft Company designed and built three D-558-I Skystreaks and three D-558-II Skyrockets. The Phase I aircraft were flown by Douglas test pilot Eugene Francis (“Gene”) May, Navy Project Officer Commander Turner F. Caldwell, Jr., and Major Marion Carl.

Major Marion E. Carl, USMC; Gene May, Douglas Aircraft Company; Commander Turner F. Caldwell, USN.
Major Marion E. Carl, USMC; Gene May, Douglas Aircraft Company; Commander Turner F. Caldwell, USN.

The D-558-I Skystreak (also referred to as the D-558-1) was a single-engine, straight winged, turbojet-powered airplane. It was built of magnesium and aluminum for light weight, but was designed to withstand very high acceleration loads. It was 35 feet, 8 inches (10.871 meters) long with a wingspan of 25 feet, 0 inches (7.62 meters) and overall height of 12 feet, 1¾ inches (3.702 meters). The airplane had retractable tricycle landing gear. Its empty weight was approximately 7,500 pounds (3,400 kilograms), landing weight at the conclusion of a flight test was 7,711 pounds (3,498 kilograms). The maximum takeoff weight was 10,105 pounds (4,583.6 kilograms). The aircraft fuel load was 230 gallons (870.7 liters) of kerosene.

The D-558-I was powered by a single Allison J35-A-11 turbojet engine. The J35 was a single-spool, axial-flow turbojet with an 11-stage compressor section, 8 combustion chambers and single-stage turbine. The J35-A-11 was rated at 5,000 pounds of thrust (22.24 kilonewtons). The engine was 12 feet, 1.0 inches (3.683 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,455 pounds (1,114 kilograms). The J35-A-11 was a production version of the General Electric TG-180, initially produced by Chevrolet as the J35-C-3. It was the first widely-used American jet engine.

The D-558-I had a designed service ceiling of 45,700 feet (13,930 meters). Intended for experimental flights of short duration, it had a very short range and took off and landed from the dry lake at Muroc. (After 1949, this would be known as Edwards Air Force Base.) The experimental airplane was not as fast as the more widely known Bell X-1 rocketplane, but rendered valuable research time in the high transonic range.

Gene May did reach Mach 1.0 in 37970, 29 September 1948, though he was in a 35° dive. This was the highest speed that had been reached up to that time by an airplane capable of taking off and landing under its own power.

The three D-558-I Skystreaks made a total of 229 flights and Bu. No. 37970 made 101 of them. After the Douglas test program was completed, -970 was turned over to NACA as NACA 140, but it was quickly grounded after the crash of the number two aircraft, and was used for spare parts for number three.

Today, 37970 is in the collection of the National Naval Aviation Museum at Naval Air Station Pensacola, Florida. The other surviving Skystreak, Bu. No. 37972, is at the Carolinas Aviation Museum, Charlotte-Douglas International Airport, Charlotte, North Carolina.

This painting depicts Major Marion E. Carl's speed record attempt over the 3 kilometer course at Muroc Dry Lake. (Steve Cox, 24" x 30", acrylic on board)
This painting depicts Major Marion E. Carl’s speed record attempt over the 3 kilometer course at Muroc Dry Lake. (Steve Cox, 24″ × 30″, acrylic on board)

For biographical information about Marion Carl, please see “This Day in Aviation” for 24 August 1942 at: https://www.thisdayinaviation.com/24-august-1942/

¹ FAI Record File Number 9865

© 2017, Bryan R. Swopes

23 August 1954

The first prototype Lockheed YC-130 Hercules takes of fromm the Lockheed Air terminal, Burbank, California, 23 August 1954. (Lockheed Martin)
The first prototype Lockheed YC-130 Hercules, 53-3397, takes of from the Lockheed Air Terminal, Burbank, California, 23 August 1954. (Lockheed Martin)

23 August 1954: The first of two Lockheed YC-130 Hercules four-engine transport prototypes, 53-3397, made its first flight from the Lockheed Air Terminal at Burbank, California, to Edwards Air Force Base. The flight crew consisted of test pilots Stanley Beltz and Roy Wimmer, with Jack G. Real (a future Lockheed vice president) and Dick Stanton as flight engineers. From a standing start, the YC-130 was airborne in 855 feet (261 meters), The flight lasted 1 hour, 1 minute.

The C-130 was designed as a basic tactical transport, capable of carrying 72 soldiers or 64 paratroopers. All production aircraft have been built at Lockheed Martin’s Marietta, Georgia, plant.

Lockheed YC-130 53-3397 during its first flight, 23 August 1954. (Lockheed Martin)

The first production model, the C-130A Hercules, was flown 7 April 1955. It was 97.8 feet (29.81 meters) long with a wingspan of 132.6 feet (40.42 meters), and height of 38.1 feet (11.61 meters). Total wing area was 1,745.5 square feet (162.16 square meters). The transport’s empty weight was 59,164 pounds (26,836 kilograms) and takeoff weight, 122,245 pounds (55,449 kilograms).

The C 130 has a rear loading ramp for vehicles, and there is a large cargo door on the left side of the fuselage, forward of the wing, The transport’s cargo compartment volume is 3,708 cubic feet (105.0 cubic meters). It could carry 35,000 pounds (15,876 kilograms) of cargo.

Lockheed YC-130 53-3397 during its first flight, 23 August 1954. (Lockheed Martin)

The C-130A was equipped with four Allison T56-A-1A turboshaft engines, driving three-bladed propellers. The engines produced 3,094 shaft horsepower at 13,820 r.p.m. (continuous), and 3,460 horsepower, Military Power (30-minute limit) or Takeoff ( 5-minute limit).

The C-130A had a cruise speed of 286 knots (329 miles per hour/530 kilometers per hour) and maximum speed of 326 knots (375 miles per hour/604 kilometers per hour) at 24,200 feet (7,376 meters). Its range with a 35,000 pound ( kilogram) payload was 1,835 nautical miles (2,112 statute miles/3,398 kilometers). The initial rate of climb at Sea Level was 4,320 feet per minute (21.95 meters per second). The combat ceiling was 38,700 feet (11,796 meters).

Lockheed YC-130 Hercules prototype, 53-3397. (SDA&SM)
Lockheed C-130A-LM Hercules 55-031, circa 1957. The radome has been added and the tip of the vertical fin squared off. (U.S. Air Force)

In addition to its basic role as a transport, the C-130 has also been used as an aerial tanker, a command-and-control aircraft, weather reconnaissance, search and rescue and tactical gunship. It has even been used as a bomber, carrying huge “Daisy Cutters” to clear large areas of jungle for use as helicopter landing zones, or, more recently, the Massive Ordnance Air Blast “mother of all bombs.” The aircraft has been so versatile that it has served in every type of mission. Over 40 variants have been built by Lockheed, including civilian transports. It is in service worldwide.

The latest version is the Lockheed C-130J Hercules. After 70 years, the C-130 is still in production, longer than any other aircraft type.

YC-130 53-3397 was scrapped at Indianapolis in 1962.

Lockheed C-130J Hercules transports under construction at Lockheed's Marietta, Georgia plant. (Lockheed Martin)
Lockheed C-130J Hercules transports under construction at Lockheed Martin’s Marietta, Georgia plant. (Lockheed Martin)

© 2024, Bryan R. Swopes