Tag Archives: Test Pilot

30 May 1949

John Oliver Lancaster, DFC. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
John Oliver Lancaster, D.F.C. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

30 May 1949: While testing a radical “flying wing” aircraft, the Rolls-Royce Nene-powered Armstrong Whitworth A.W.52, TS363, test pilot John Oliver (“Jo”) Lancaster, D.F.C., encountered severe pitch oscillations in a 320 mile per hour (515 kilometer per hour) dive. Lancaster feared the aircraft would disintegrate.

In the very first use of the Martin-Baker Mk1 ejection seat in an actual emergency, Lancaster fired the seat and was safely thrown clear of the aircraft. He parachuted to safety and was uninjured. The aircraft was destroyed.

Bernard I. Lynch, B.E.M., seated in the cockpit, with John O. Lancaster, D.F.C. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

The Martin-Baker MK1 was developed by Bernard Ignatius (“Benny”) Lynch, B.E.M., a ground fitter for Martin-Baker Aircraft Co., Ltd., who tested it himself, ejecting from a test aircraft at 420 miles per hour (676 kilometers per hour) and 12,000 feet (3,658 meters). He eventually made more than 30 ejections. Lynch was awarded the British Empire Medal in the King’s 1948 New Year Honours.

The seat was launched with a two cartridge ejection gun, with an initial velocity of 60 feet per second (18.3 meters per second). After rising 24 feet (7.3 meters), a static line fired a drogue gun, deploying a 24-inch (0.61 meter) drogue parachute to stabilize the seat. The static line also actuated the seat’s oxygen supply. The pilot manually released himself from the seat, and opened his parachute by pulling the rip cord.

Martin-Baker Mk1 ejection seat (Martin-Baker)
Martin-Baker Mk1 ejection seat. The parachute is an Irvin I 24. (Martin-Baker)

As of 31 May 2023, 7,695 airmen worldwide have been saved by Martin-Baker ejection seats. 69 of these were with the Mk1.

Armstong Whitworth A.W. 52, TS363
Armstrong Whitworth AW.52, TS363

The Armstrong Whitworth A.W.52 was an all-metal, experimental two-place, twin engine, tailless “flying wing” airplane with retractable tricycle landing gear. The concept was that of an air mail aircraft. The cockpit was pressurized and offset to the left of the aircraft centerline. The two turbojet engines are in nacelles positioned almost entirely within the wing. The A.W.52 was 37 feet, 4 inches (11.354 meters) long with a wingspan of 90 feet (27.4 meters) and height of 14 feet, 4 inches (4.343 meters).

The wings were swept in two sections. From the fuselage to just outboard of the engines, the leading edges were swept to 17° 34′. From that point, called “the knuckle” in contemporary descriptions, the sweep increased to 34° 6′ to the wing tips. (A line from the ¼-chord points at the wing root and tip gave a sweep of 24¾°.) The inner wing had no dihedral, and the outer wing had 1° dihdreal. The wing incorporated a -5° twist between the root and tip. The total wing area was 1,314 square feet (122.1 square meters). Vertical fins and rudders are attached at the wing tips.

Armstrong Whitworth A.W.512.

The airplane incorporated boundary layer control to delay the wing stalling in the area of the ailerons. It also used engine heat for deicing,

The A.W.52 had a empty weight of 19,662 pounds (9,055 kilograms) total weight of 32,700 pounds (14,832 kilograms).

The A.W.52 was powered by two Rolls-Royce RB.41 Nene Mk.I engines. The Nene was a single-shaft turbojet developed from the RB.40 Derwent. It had first been run in October 1944. The Nene was considerably larger than the Derwent and produced nearly double the thrust. It had a single-stage centrifugal-flow compressor and single-stage axial-flow turbine. It was rated at 5,000 pounds of thrust (22.24 kilonewtons) at 12,400 r.p.m. for takeoff. The second A.W.52 prototype, TS368, used two Derwent engines.

The A.W.52 had a maximum speed at Sea Level of 500 miles per hour (805 kilometers per hour) and 480 miles per hour (772 meters) at 36,000 feet (10,973 meters). Its maximum range was 1,500 miles (2,414 kilometers), flying 330 miles per hour (531 kilometers per hour) at 36,000 feet (10,973 meters).

Sir W. G. Armstrong Whitworth Aircraft Limited (AWA) advertisement from FLIGHT, 14 January 1948. (Aviation Ancestry)

© 2018, Bryan R. Swopes

29 May 1940

Vought-Sikorsky Aircraft Division XF4U-1 Corsair prototype, Bu. No. 1443, in flight. (Rudy Arnold Collection/NASM)

29 May 1940: Vought-Sikorsky Aircraft Division test pilot Lyman A. Bullard, Jr. took the U.S. Navy’s new prototype fighter, the XF4U-1, Bu. No. 1443, for its first flight at the Bridgeport Municipal Airport, Bridgeport, Connecticut. Designed by Rex Buren Beisel, the prototype would be developed into the famous F4U Corsair.¹

Rex Buren Beisel, designer of the F4U-1 Corsair, at left, with Corsair pilot Major Gregory Boyington, USMCR, circa 1942. (Unattributed)

The F4U Corsair is a single-place, single-engine fighter, designed for operation from the U.S. Navy’s aircraft carriers. The XF4U-1 prototype was 30 feet (9.144 meters) long with a wing span of 41 feet (12.497 meters) and overall height of 15 feet, 7 inches (4.750 meters). It had an empty weight of 7,576 pounds (3,436 kilograms) and gross weight of 9,374 pounds (4,252 kilograms).

Vought-Sikorsky XF4U-1 Corsair, Bu. No. 1443
Vought-Sikorsky XF4U-1 Corsair, Bu. No. 1443. The airplane’s wings are painted yellow. (Vought-Sikorsky Aircraft Division)

The XF4U-1 was first powered by an experimental air-cooled, supercharged, 2,804.4-cubic-inch-displacement (45.956 liters) Pratt & Whitney R-2800 X-2 (Double Wasp A2-G), and then an R-2800 X-4 (Double Wasp SSA5-G), both two-row 18-cylinder radial engines. The R-2800 X-4 was an X-2 with an A5-G supercharger. The R-2800 X-2 had a compression ratio of 6.65:1 and was rated at 1,500 horsepower at 2,400 r.p.m. at 7,500 feet (2,286 meters). The X-4 was rated at 1,600 horsepower at 2,400 r.p.m. at 3,500 feet (1,067 meters); 1,540 horsepower at 2,400 r.p.m. at 13,500 feet (4,115 meters); 1,460 horsepower at 2,400 r.p.m. at 21,500 feet (6,553 meters); and 1,850 horsepower at 2,600 r.p.m for takeoff. The engine drove a 13 foot, 4 inch (4.064 meter) diameter, three-bladed, Hamilton Standard Hydromatic constant-speed propeller through a 2:1 gear reduction. The X-4 had a compression ratio of 6.66:1 and used a two-speed, two-stage supercharger. This was the most powerful engine and largest propeller used on any single engine fighter up to that time. The R-2800 X-4 was 4 feet, 4.50 inches (1.334 meters) in diameter and 7 feet, 4.81 inches (2.256 meters) long. It weighed 2,500 pounds (1,134 kilograms).

The size of the propeller was responsible for the Corsair’s most distinctive feature: the inverted gull wing. The width of the wing (chord) limited the length of the main landing gear struts. By placing the gear at the bend, the necessary propeller clearance was gained. The angle at which the wing met the fuselage was also aerodynamically cleaner.

Vought Aircraft Division XF4U-1, front. (Vought Sikorsky VS-2612)
Vought-Sikorsky XF4U-1 Corsair, front, 19 April 1941. (Vought-Sikorsky VS-2612)
Vought Aircraft Division XF4U-1, right front quarter view. (Vought-Sikorsky VS-2618)
Vought-Sikorsky XF4U-1 Corsair, right front quarter view, 19 April 1941. (Vought-Sikorsky VS-2618)
Vought Aircraft Division XF4U-1, right profile (Vought-Sikorsky VS-2619)
Vought-Sikorsky XF4U-1 Corsair, right profile, 19 April 1941. (Vought-Sikorsky VS-2619)
Vought-Sikorsky XF4U-1, right rear quarter, 26 May 1940. (Vought-Sikorsky VS-1414/ cropped image from Connecticut Air & Space Center)
Vought Aircraft Division XF4U-1, rear, 26 May 1940. (Vought-Sikorsky VS-1407)
Vought-Sikorsky XF4U-1 Corsair, rear, 26 May 1940. (Vought-Sikorsky VS-1407)
Vought Aircraft Division XF4U-1, left side, wings folded, 26 May 1940. (Vought-Sikorsky VS-1416)
Vought-Sikorsky XF4U-1, left side, wings folded, 26 May 1940. (Vought-Sikorsky VS-1416)

The XF4U-1 prototype had a maximum speed of 378 miles per hour (608 kilometers per hour) at 23,500 feet (7,163 meters). Although it has been widely reported that it was the first U.S. single-engine fighter to exceed 400 miles per hour (643.7 kilometers per hour) in level flight, this is actually not the case. During a flight between Stratford and Hartford, Connecticut, the prototype averaged a ground speed 405 miles per hour (652 kilometers per hour). This was not a record flight, and did not meet the requirements of any official speed record.

Several changes were made before the design was finalized for production. Fuel tanks were removed from the wings to make room for six Browning AN-M2 .50-caliber machine guns and ammunition. A new tank was placed in the fuselage ahead of the cockpit. This moved the cockpit rearward and lengthened the nose.

On 11 July 1940, the XF4U-1 was low on fuel. Rather than returning to Bridgeport, test pilot Boone Tarleton Guyton made a precautionary landing on a golf course at Norwich, Connecticut. The grass was wet from rain and the prototype ran into the surrounding trees. Guyton was not injured, but 1443 was seriously damaged. Vought-Sikorsky repaired it and it returned to flight testing about two months later.

Vought-Sikorsky F4U-1 Corsair, Bu. No. 2170, with test pilot Willard Bartlett Boothby, 24 October 1942. (Rudy Arnold Collection/National Air and Space Museum NASM-XRA-1294)

The production F4U-1 Corsair had a length of 33 feet, 4.125 inches (10.163 meters), wingspan of 40 feet, 11.726 inches (12.490 meters) and overall height (to top of propeller arc) of 15 feet, 0.21 inches (4.577 meters). The wing had 2° incidence at the root. The outer wing had a dihedral of 8.5°, and the leading edges were swept back 4°10′. With its wings folded, the width of the F4U-1 was 17 feet, 0.61 inches (5.197 meters), and gave it a maximum height of 16 feet, 2.3 inches (4.935 meters). When parked, the Corsair’s 13 foot, 4 inch (4.064 meter) propeller had 2 feet, 1.93 inches (65.862 centimeters) ground clearance, but with the fighter’s thrust line level, this decreased to just 9.1 inches (23.1 centimeters).

Vought-Sikorsky F4U-1 Corsair, 1942. (U.S. Navy)

During fight testing of a production F4U-1 Corsair with a Pratt & Whitney R-2800-8 (Double Wasp SSB2-G) engine installed, armed with machine guns with 360 rounds of ammunition per gun, the fighter reached a maximum speed of 395 miles per hour (635.7 kilometers per hour) in level flight at 22,800 feet (6,949 meters), using Military Power. The service ceiling was 38,400 feet (11,704 meters).

A total of 12,571 Corsairs were manufactured the Vought-Sikorsky Aircraft Division (F4U-1), Goodyear Aircraft Corporation (FG-1D) and Brewster Aeronautical Corporation (F3A-1). The Corsair served the U.S. Navy and Marine Corps in World War II and the Korean War. Corsairs also served in other countries’ armed forces. Its last known use in combat was in Central America in 1969.

Vought-Sikorsky F4U-1 Corsair, 1942. (U.S. Navy)

¹ corsair: noun, cor-sair. A pirate, or privateer (especially along the Barbary Coast of the Mediterranean Sea); a fast ship used for piracy.

© 2018, Bryan R. Swopes

27 May 1958

Robert C. Little with YF4H-1 Bu. No. 142259. (McDonnell Douglas)
Robert C. Little with McDonnell YF4H-1 Phantom II, Bu. No. 142260, the second prototype. (McDonnell Douglas Corporation)

27 May 1958: At Lambert Field, St. Louis, Missouri, McDonnell Aircraft Corporation’s Chief Test Pilot (and future company president) Robert C. Little made the first flight of the YF4H-1 prototype. The twin-engine Mach 2+ airplane was the first pre-production model of a new U.S. Navy fleet defense interceptor that would be developed into the legendary F-4 Phantom II fighter bomber.

The flight lasted 22 minutes. Little had planned to go supersonic but a leak in a pressurized hydraulic line caused him to leave the landing gear extended as a precaution, should the back-up hydraulic system also have a problem. This limited the maximum speed of the prototype to 370 knots (426 kilometers per hour). A post-flight inspection found foreign-object damage to the starboard engine.

The McDonnell YF4H-1 Bu. No. 142259 on its first flight 27 May 1958.
McDonnell YF4H-1 Phantom II, Bu. No. 142259, on its first flight, 27 May 1958. (McDonnell Douglas Corporation)

Initially designated XF4H-1 and assigned Bureau of Aeronautics serial number (“Bu. No.”) 142259, the identifier was changed to YF4H-1. It had been in development for over five years based on a company proposal to the Navy.

The McDonnell YF4H-1 Phantom II was 56 feet, 7.9 inches (17.271 meters) long with a wingspan of 38 feet, 4.89 inches (11.707 meters) and overall height of 16 feet, 3.0 inches (4.953 meters). With wings folded, the airplane’s span was narrowed to 27 feet, 6.6 inches (8.397 meters). The wings were swept 45° at 25% chord. The inner wing had no dihedral, while the outer panels had 12° dihedral. The stabilator had a span of 16 feet, 5.0 inches (5.004 meters), with -23.25° anhedral. The wheelbase of Phantom II’s tricycle undercarriage was 23 feet, 3.25 inches (7.093 meters), with a main wheel tread of 17 feet, 10.46 inches (5.447 meters).

McDonnell YF4H-1 Phantom II, Bu. No. 142259, at Lambert Field, St. Louis. (McDonnell Aircraft Corporations)

The YF4H-1 prototype was powered by two General Electric J79-GE-2 engines. These were single-spool, axial-flow turbojet engines with a 17-stage compressor and 3-stage turbine. The J79-GE-2 was rated at 10,350 pounds of thrust (46.039 kilonewtons), and 16,150 pounds (71.389 kilonewtons) with afterburner. The engines were 17 feet, 4.0 inches (5.283 meters) long, 3 feet, 2.3 inches in diameter (0.973 meters), and each weighed 3,620 pounds (1,642 kilograms).

The production F4H-1 (F-4B) had a maximum speed of 845 miles per hour (1,360 kilometers per hour) at Sea Level and 1,485 miles per hour (2,390 kilometers per hour) at 48,000 feet (14,630 meters meters). (Mach1.11 and Mach 2.25, respectively). The service ceiling was 62,000 feet (18,898 meters) and maximum range with external fuel was 2,300 miles (3,700 kilometers).

McDonnell YF4H-1 Bu.No. 142259.
McDonnell Aircraft Corporation prototype YF4H-1 Phantom II Bu. No. 142259.

The second prototype YF4H-1, Bu. No. 142260, flown by Commander Lawrence E. Flint, Jr., USN, set a Fédération Aéronautique Internationale (FAI) World Record for Altitude, 6 December 1959, when it zoom-climbed to 30,040 meters (98,556 feet).¹ On 22 November 1961, flown by Lieutenant Colonel Robert B. Robinson, USMC, 142260 also set an FAI World Record for Speed over a Straight 15/25 Kilometer Course, averaging 2,585.425 kilometers per hour (1,606.509 miles per hour).² On 5 December 1961, the same Phantom set an FAI World Record for Altitude in Horizontal Flight at 20,252 meters (66,444 feet) with Commander George W. Ellis, USN, in the cockpit.³

McDonnell YF4H-1 Phantom II, Bu. No. 142260, takes off at Edwards Air Force Base, during Project Top Flight. (U.S. Navy)
McDonnell YF4H-1 Phantom II, Bu. No. 142260, takes off at Edwards Air Force Base, during Project Top Flight. (U.S. Navy)

The F-4A through F-4D Phantoms were armed with four AIM-7 Sparrow radar-homing air-to-air missiles, and could carry additional Sparrows or AIM-9 Sidewinder infrared-homing missiles on pylons under the wings. Up to 16,000 pounds (7,257 kilograms) of bombs could be carried on five hardpoints.

McDonnell Aircraft built two YF4H-1 prototypes, followed by 45 F4H-1F (F-4A) Phantom IIs before the F-4B was introduced in 1961. 649 F-4Bs were produced. The initial U.S. Air Force variant was the F-110A Spectre (F-4C Phantom II). McDonnell Douglas delivered its last Phantom II, an F-4E-67-MC, on 25 October 1979. In 21 years, the company had built 5,057 Phantom IIs.

McDonnell Douglas F-4E-67-MC Phantom II, 78,0744, the last of 5,057 Phantoms built at St. Louis, 25 October 1979. (McDonnell Douglas)
McDonnell Douglas F-4E-67-MC Phantom II, 78,0744, the last of 5,057 Phantoms built at St. Louis, 25 October 1979. (McDonnell Douglas)

After 11 test flights at St. Louis, Bob Little flew the YF4H-1 west to Edwards Air Force Base in the high desert of southern California where more detailed flight testing and evaluation took place.

On 21 October 1959, a failure of an engine access door led to a cascading series of problems which resulted in the loss of the airplane and death of the pilot, Gerald “Zeke” Huelsbeck.

Test Pilot Gerald Huelsbeck with a prototype McDonnell YF4H-1 Phantom II. Huelsbeck is wearinga Goodrich Mark IV full-pressure suit. (McDonnell Aircraaft Corporation)
Test Pilot Gerald Huelsbeck with the first prototype McDonnell YF4H-1 Phantom II, Bu. No. 142259, at Edwards Air Force Base, California. “Zeke” Huelsbeck is wearing a B.F. Goodrich Mark IV full-pressure suit. (McDonnell Aircraft Corporation)
McDonnell YF4H-1 Phantom II Bu. No. 142259, seen from above. (U.S. Navy)
McDonnell YF4H-1 Phantom II Bu. No. 142259, seen from above. (U.S. Navy)

¹ FAI Record File Number 10352

² FAI Record File Number 9060

³ FAI Record File Number 8535

© 2019, Bryan R. Swopes

26 May 1942

Northrop Corporation XP-61 Black Widow at Hawthorne.
Northrop Corporation XP-61 prototype 41-19509 at Northrop Field, 1942. (U.S. Air Force)

26 May 1942: The prototype Northrop XP-61-NO Black Widow, 41-19509, made its first flight at Northrop Field, Hawthorne, California, with free-lance test pilot Vance Breese at the controls. (Breese had taken the North American Aviation NA-73X, prototype of the Mustang, for its first flight, 20 October 1940.)

Northrop XP-61 41-19509 taking off from Northrop Field. (U.S. Air Force)

The first American airplane designed specifically as a night fighter, the XP-61 was the same size as a medium bomber: 48 feet, 11.2 inches (14.915 meters) long with a wingspan of 66 feet (20.117 meters) and overall height of 14 feet, 8.2 inches (4.475 meters). The prototype was equipped with a mockup of the top turret. Its empty weight was 22,392 pounds (10,157 kilograms), gross weight of 25,150 pounds (11,408 kilograms) and maximum takeoff weight of 29,673 pounds (13,459 kilograms).

Northrop XP-61 41-19509 retracts its landing gear after takeoff. (U.S. Air Force)

The XP-61 was powered by two air-cooled, supercharged, 2,804.4-cubic-inch-displacement (45.956 liter) Pratt & Whitney Double Wasp SSB2-G (R-2800-10) two-row, 18-cylinder radial engines with a compression ratio of 6.65:1. The R-2800-10 had a Normal Power rating of 1,550 horsepower at 2,550 r.p.m. at 21,500 feet (6,553 meters), and 2,000 horsepower at 2,700 r.p.m. for takeoff, burning 100-octane gasoline. The R-2800-10 had a 2:1 gear reduction and drove four-bladed Curtiss Electric constant-speed propellers which had a 12 foot, 2 inch (3.708 meter) diameter. The R-2800-10 was 4 feet, 4.50 inches (1.334 meters) in diameter, 7 feet, 4.47 inches (2.247 meters) long, and weighed 2,480 pounds (1,125 kilograms), each.

The prototype Black Widow had a top speed of 370 miles per hour (595 kilometers per hour) at 29,900 feet (9,114 meters) and a service ceiling of 33,100 feet (10,089 meters). The maximum range was 1,450 miles (2,334 kilometers).

Prototype Northrop XP-61 Black Widow 41-19509 in camouflage. (U.S. Air Force)

The night fighter was crewed by a pilot, a gunner and a radar operator. A large Bell Laboratories-developed, Western Electric-built SCR-720 air search radar was mounted in the airplane’s nose. The gunner sat above and behind the pilot and the radar operator was in the rear fuselage.

SCR-720 Air Search Radar mounted in nose of a Northrop P-61 Black Widow night fighter. (NOAA)

The Black Widow was armed with four Browning AN-M2 .50-caliber machine guns in a remotely-operated upper turret, and four AN-M2 20 mm aircraft automatic cannons, grouped close together in the lower fuselage and aimed directly ahead. This was a superior arrangement to the convergent aiming required for guns mounted in the wings. The fire control system was similar to that used by the B-29 Superfortress. The guns could be fired by either the gunner or the radar operator. The Black Widow carried 200 rounds of ammunition for each cannon.

The eight guns of a P-61 Black Widow converge on target during test firing.
Northrop P-61A-1-NO Black Widow 42-5507 in olive green camouflage. (U.S. Air Force)
Northrop P-61A-1-NO Black Widow 42-5507 in olive green camouflage. (U.S. Air Force)

The XP-61 was built with a center “gondola” for the crew, radar and weapons, with the engines outboard in a twin-boom configuration, similar the the Lockheed P-38 Lightning. The Black Widow did not use ailerons. Instead, it had spoilers mounted on the upper wing surface outboard of the engines. Roll control was achieved by raising a spoiler, decreasing lift on that wing and causing it to drop. A similar system was employed on the Boeing B-52 Stratofortress ten years later.

Northrop P-61A three-view illustration with dimensions. (U.S. Army Air Forces)

The P-61 got its nickname, Black Widow, from the glossy black paint scheme that scientists at the Massachusetts Institute of Technology (M.I.T.) had determined was the best camouflage for a night fighter. Over 700 P-61s were built, with 36 built as the F-15 photo reconnaissance variant. They served in both the Pacific and European Theaters during World War II, and were also used during the Korean War. After the war, the radar-equipped fighter was used for thunderstorm penetration research.

Northrop P-61C-1-NO Black Widow 43-8353 at the National Museum of the United States Air Force. (U.S. Air Force)
Northrop P-61C-1-NO Black Widow 43-8353 at the National Museum of the United States Air Force. (U.S. Air Force)
Northrop P-61C-1-NO Black Widow 43-8353 at the National Museum of the United States Air Force. (U.S. Air Force)

© 2018, Bryan R. Swopes

25 May 1953

George S. Welch with North American YF-100A 52-5754. (North American Aviation, Inc.)

25 May 1953: North American Aviation Chief Test Pilot George S. Welch took the YF-100A Super Sabre, U.S. Air Force serial number 52-5754, for its first flight at Edwards Air Force Base. The airplane reached Mach 1.03.

Development of the Super Sabre began with an effort to increase the speed of the F-86D and F-86E Sabre fighters. The wings had more sweep and the airfoil sections were thinner. A much more powerful engine would be needed to achieve supersonic speed in level flight. As design work on the “Sabre 45” proceeded, the airplane evolved to a completely new design. Initially designated XF-100, continued refinements resulted in the first two aircraft being redesignated YF-100A.

North American Aviation Chief Test Pilot George S. Welch in the cockpit of the YF-100A, 52-5754, at Los Angeles International Airport. (North American Aviation, Inc.)
North American Aviation Chief Test Pilot George S. Welch in the cockpit of YF-100A 52-5754 at Los Angeles International Airport. (North American Aviation, Inc.)

The two YF-100As, 52-5754 and 52-5755, were 46 feet, 2.4 inches (14.082 meters) long with a wingspan of 36 feet, 9.6 inches (11.217 meters) and height of 14 feet, 4.8 inches (4.389 meters). The Super Sabre had a 49° 2′ sweep to the leading edges of the wings and horizontal stabilizer. The wings were swept to 45° at 25% chord, and had 0° angle of incidence, 0° dihedral, and no twist. The total wing area was 376 square feet (34.932 square meters). The ailerons were placed inboard on the wings to eliminate their twisting effects at high speed. The airplane had no flaps, resulting in a high stall speed in the landing configuration. The horizontal stabilizer was moved to the bottom of the fuselage to keep it out of the turbulence created by the wings at high angles of attack. The pre-production prototypes weighed 18,279 pounds (8,291 kilograms) empty; had a combat weight of 24,789 pounds (11,244 kilograms); and maximum takeoff weight of 28,965 pounds (13,138 kilograms).

The YF-100A had a fuel capacity of 757 U.S. gallons (2,866 liters) in five fuselage tanks, and could carry two external drop tanks for another 550 gallons (2,082 liters).

The new air superiority fighter was powered by a Pratt & Whitney Turbo Wasp XJ57-P-7 engine. The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor section (9 low- and 7 high-pressure stages) and a 3-stage turbine (2 high- and 1 low-pressure stages). The XJ57-P-7 had a Normal Power rating of 7,250 pounds of thrust (32.250 kilonewtons) at 5,570 r.p.m., N1/9,630 r.p.m, N2; Military Power rating was 8,450 pounds thrust (37.587 kilonewtons) at 5,850 r.p.m./9,630 r.p.m., for 30 minutes; and 13,200 pounds thrust (587.717 kilonewtons) at 5,850 r.p.m./9,630 r.p.m. with afterburner, limited to five minutes. The engine was 20 feet, 3.0 inches (6.172 meters) long, 3 feet, 5.0 inches (1.014 meters) in diameter, and weighed 5,126 pounds (2,325 kilograms). Later production aircraft used a J57-P-39 engine, which had the same ratings.

Cutaway illustration ofa North American Aviation F-100A Super Sabre. (Boeing)
Cutaway illustration of a North American Aviation F-100A Super Sabre. (Boeing)
North American Aviation YF-100 Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754, 19 May 1953. (North American Aviation, Inc.)
The prototype North American Aviation YF-100A Super Sabre, 52-5754, with the North American F-100 team. Chief Test Pilot George S. Welch is in the center of the front row, seated. (North American Aviation, Inc.)

The YF-100A had a maximum speed of 634 knots (730 miles per hour/1,174 kilometers per hour) at Sea Level, and 573 knots (659 miles per hour/1,061 kilometers per hour) at 43,350 feet (13,213 meters). The service ceiling was 46,000 feet (14,021 meters). The combat radius was 422 nautical miles (486 statute miles/782 kilometers), and maximum ferry range, 1,410 nautical miles (1,623 statute miles/2,611 kilometers).

During testing, 52-5754 reached Mach 1.44 in a dive. On 29 October 1953, Colonel Frank K. Everest set a world speed record of 1,215.298 kilometers per hour (755.151 miles per hour) with 52-5754.¹

In service with the United States Air Force, the Super Sabre’s mission changed from air superiority fighter to fighter bomber. It was used extensively during the Vietnam War. North American Aviation, Inc., built 2,294 single and tandem-seat Super Sabres between 1954 and 1959.

The F-100 pushed the State of the Art in the 1950s. There was a very steep learning curve back then. They remained in service with the USAF until 1979, and with the Republic of China Air Force until 1988. They also flew for France and Turkey.

In USAF service, 889 were destroyed in accidents, resulting in the death of 324 pilots. During the Vietnam War, the F-100s flew more combat sorties that all of the 15,000+ P-51 Mustangs during World War II. 186 Super Sabres were shot down by antiaircraft fire, but none were lost to enemy fighters.

North American Aviation YF-100A Super Sabre 52-5754. (U.S. Air Force)
North American Aviation YF-100A Super Sabre 52-5754 over Edwards Air Force Base, California, 25 May 1953. (North American Aviation, Inc.)
North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

North American Aviation YF-100A Super Sabre 52-5754 banks away from a chase plane during a flight test. (U.S. Air Force)

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross. During the War, Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. (U.S. Air Force)
North American Aviation pre-production prototype YF-100A Super Sabre 52-5754 with drag chute deployed on landing at Edwards Air Force Base, California. The extended pitot boom is used to calibrate instruments early in the flight test program. (U.S. Air Force)
North American Aviation YF-100 Super Sabre 52-5754 with external fuel tanks, parked on the dry lake at Edwards Air Force Base, California. (U.S. Air Force)

¹ FAI Record File Number 8868

© 2025, Bryan R. Swopes