Tag Archives: Test Pilot

30 April 1953

North American Aviation YF-86H-1-NA Sabre 52-1975 during a test flight. A long pitot boom is used for initial instrument calibration. (U.S. Air Force)
North American Aviation YF-86H-1-NA Sabre 52-1975 fighter bomber at Edwards AFB. (U.S. Air Force)

30 April 1952, the first North American Aviation F-86H Sabre fighter bomber, YF-86H-1-NA 52-1975, made its first flight with test pilot Joseph A. Lynch, Jr., in the cockpit. It was flown from the Inglewood, California, factory to Edwards Air Force Base for evaluation and testing.

While the F-86A, E and F Sabres were air superiority fighters and the F-86D and L were all-weather interceptors, the F-86H was a fighter bomber, designed to attack targets on the ground with guns, bombs and rockets.

Larger and with a maximum gross weight nearly 4,000 pounds (1,814 kilograms) heavier than an F-86F, the H model’s J73 engine provided almost 40% more thrust. The engine was larger that the J47 used in previous F-86 models, and this required a much larger air intake and airframe modifications. The fuselage was 6 inches deeper and two feet longer than the F-86F. This accommodated the new engine and an increase in fuel load. The tail surfaces were changed with an increase in the height of the vertical fin and the elevators were changed to an “all-flying” horizontal stabilizer. Though it’s top speed was only marginally faster, the F-86H could take off in a shorter distance and climb faster with a higher service ceiling than the earlier models.

Joseph Lynch
Joseph A. Lynch, Jr.

The two pre-production aircraft were built at Inglewood, California, but all production airplanes were built at Columbus, Ohio. The serial numbers of those F-86H Sabres have the suffix -NH.

The North American Aviation F-86H Sabre was 38 feet, 10 inches (11.836 meters) long with a wingspan of 39 feet, 1 inch (11.913 meters) and overall height of 14 feet, 11 inches (4.547 meters). Empty weight was 13,836 pounds (6,276 kilograms) and gross weight was 24,296 pounds (11,021 kilograms).

The F-86H was powered by a General Electric J73-GE-3D or -3E engine, a single-spool, axial-flow, turbojet engine, which used a 12-stage compressor section with variable inlet vanes, 10 combustion chambers and 2-stage turbine section. It produced 8,920 pounds of thrust (39.68 kilonewtons) at 7,950 r.p.m.  (5-minute limit). The J73 was 12 feet, 3.2 inches (3.739 meters) long, 3 feet, 0.8 inches (0.935 meters) in diameter and weighed 3,650 pounds (1,656 kilograms).

North American Aviation F-86H-10-NH Sabre 53-1298. (U.S. Air Force)

The F-86H had a maximum speed of 601 knots (692 miles per hour/1,113 kilometers per hour) at Sea Level and 536 knots (617 miles per hour (993 kilometers) at 35,000 feet (10,668 meters). The fighter bomber had an initial rate of climb of 12,900 feet per minute (65.53 meters per second) and it could reach 30,000 feet (9,144 meters) in 5.7 minutes. The service ceiling was 50,800 feet (15,484 meters). With a full load of bombs, the F-86H had a combat radius of 350 nautical miles (402 statute miles/648 kilometers) at 470 knots (541 miles per hour (870 kilometers per hour). The maximum ferry range was 1,573 nautical miles (1,810 statute miles/2,913 kilometers).

The two pre-production YF-86Hs were unarmed. The first ten production airplanes were built with six .50 caliber Browning machine guns, the same as the F-86F Sabre, but the remaining F-86H Sabres were armed with four M39 20 mm revolver autocannon with 600 rounds of ammunition. In ground attack configuration, a maximum bomb load of 2,310 pounds (1,048 kilograms) could be carried, or one 12–24 kiloton Mark 12 “Special Store” that would be delivered by “toss bombing.”

The F-86H Sabre became operational in 1954. 473 F-86H Sabres were built before production ended. By 1958 all that remained in the U.S. Air Force Inventory were reassigned to the Air National Guard. The last one was retired in 1972.

North American Aviation F-86H Sabre. (U.S. Air Force)

© 2019, Bryan R. Swopes

29 April 1988

N401PW, the first Boeing 747-400 airliner. (The Boeing Company)

29 April 1988: Boeing test pilots James C. Loesch and Kenneth Higgins take the new Boeing 747-400, serial number 23719, registration N401PW, for its first flight from Paine Field, landing at Boeing Field 2 hours 29 minutes later.

The 747-400 was a major development of the 747 series. It had many structural and electronics improvements over the earlier models, which had debuted 18 years earlier. New systems, such as a “glass cockpit”, flight management computers, and new engines allowed it to be flown with a crew of just two pilots, and the position of Flight Engineer became unnecessary.

Roll-out, Boeing 747-400 c/n 23719. (The Boeing Company)

The most visible features of the –400 are its longer upper deck and the six-foot tall “winglets” at the end of each wing, which improve aerodynamic efficiency be limiting the formation of wing-tip vortices.

On 27 June 1988, this 747-400 set a Maximum Takeoff Weight record for airliners by lifting off at Moses Lake, Washington at 892,450 pounds (405,659 kilograms).¹ At the time of its first flight, Boeing had already received orders for 100 747-400s. It would become the most popular version, with 694 aircraft built by the time production came to an end 15 March 2007.

Cockpit of a Boeing 747-400 airliner.
Cockpit of a Boeing 747-400 airliner. 

The Boeing 747-400 airliner can carry between 416 and 660 passengers, depending on configuration. It is 231 feet, 10 inches (70.6 meters) long with a wingspan of 211 feet, 5 inches (64.4 meters) and overall height of 63 feet, 8 inches (19.4 meters). Empty weight is 394,100 pounds (178,800 kilograms). Maximum takeoff weight (MTOW) is 875,000 pounds (396,890 kilograms).

Northwest Boeing 747-451 N661US
Northwest Boeing 747-451 N661US on approach to Osaka. (Wikipedia Commons)

While the prototype was powered by four Pratt & Whitney PW4056 turbofan engines, production airplanes could be ordered with PW4062, General Electric CF6 or Rolls-Royce RB211 engines, providing thrust ranging from 59,500 to 63,300 pounds.

The –400 has a cruise speed of 0.85 Mach (567 miles per hour, 912 kilometers per hour) and maximum speed of 0.92 Mach (614 miles per hour, 988 kilometers hour). Maximum range at maximum payload weight is 7,260 nautical miles (13,450 kilometers).

Northwest Airlines' Boeing 747-451 N661US on approach to Osaka Kansai International Airport, 11 June 2007. (Photograph courtesy of Dennis Lau)
Northwest Airlines’ Boeing 747-451, N661US, on approach to Osaka Kansai International Airport, 11 June 2007. (Photograph courtesy of Dennis Lau)

After the test program was completed, the prototype 747-400 was outfitted for airline service. It was operated by Northwestern Airlines and is currently in service with Delta Air Lines. It has been re-registered as N661US, and carries the Delta fleet number 6301.

N661US was the aircraft operated as Northwest Airlines Flight 85 on 9 October 2002 when it suffered a rudder hardover while over the North Pacific Ocean. The aircraft went into a sudden 40° left bank when a hydraulic power unit for the lower rudder failed due to a fatigue fracture. This incident is considered to be an excellent example of Cockpit Resource Management (CRM) as the flight crew successfully landed the airplane at Anchorage, Alaska.

Boeing 747-451 N661US, Delta Air Lines, landing at Tokyo-Narita International Airport, 25 July 2009. (Photograph courtesy of Kazuchika Naya)
Boeing 747-451 N661US, Delta Air Lines, landing at Tokyo-Narita International Airport, 25 July 2009. (Photograph courtesy of Kazuchika Naya)

After flying its final revenue flight, 9 September 2015, as Flight 836, Honolulu to Atlanta, N661US was stored at Delta Technical Operations. It is now displayed at the Delta Flight Museum, Hartsfield Jackson International Airport.

Delta’s Ship 6301, N661US, completes its final flight, landing at Hartsfield Jackson International Airport, Atlanta, Georgia, 9 September 2015. (Delta Flight Museum)

¹ FAI Record File Number 2203)

© 2019, Bryan R. Swopes

26 April 1995

Roman Taskaev in the cockpit of a Mikoyan MiG-29 in flight over Canada, circa 1990. (Vintage Wings of Canada)

26 April 1995: Mikoyan test pilot Roman Petrovich Taskaev flew a MiG-29 to a Fédération Aéronautique Internationale (FAI) World Altitude Record of 27,460 meters (90,092 feet) at Aerodrome Akhtubinsk, Russia. This record still stands.¹

Роман Петрович Таскаев (Roman Petrovich Taskaev) was born at Khilok, Zabayaski Krai, Russian Soviet Federative Socialist Republic, 14 October 1954.

From 1967 through 1971, Taskaev was a member of the Chita aero club, where he participated in gliding and skydiving.

Taskaev entered the Soviet Army in 1971. In 1975, he graduated from the National University of Internal Affairs at Kharkiv, Ukraine Soviet Socialist Republic. He then served with several combat units of the Soviet Air Force. He was promoted to the rank of captain in 1981.

Роман Петрович Таскаев

Captain Taskaev attended the School of Test Pilots in 1983. He was then assigned to the Mikoyan Design Bureau as a test pilot in June 1983. He remained there through May 1998. he was a senior test pilot 1992–1997. He was involved in flight testing the variants of the Mikoyan MiG-23, MiG-25, MiG-29 and MiG-31. He flew a MiG-31 over the North Pole.

Taksaev has ejected from a MiG-23UB at very low altitude and maximum speed following an engine failure, and from a MiG-29M.

By decree of the president of the Russian Federation, 16 August 1992, Taskaev was named a Hero of the Russian Federation with Gold Star. In 1996, he was awarded the order of Courage, and in 1998, he was named an Honored Test Pilot of the Russian Federation.

Since 1998, Roman Taskaev has served as Deputy Director of Flight Testing at the Yakovlev Design Bureau.

Roman Taskaev holds his FAI record certificate. (FAI)

The Mikoyan MiG-29 is a fourth generation, single-seat, twin-engine, Mach 2+ air superiority fighter built by the Mikoyan Design Bureau. It entered service with the Soviet Union in 1983 and has been widely exported to many other nations.

The MiG 29 is 17.320 meters (56 feet, 9.89 inches) long, including the pitot boom. The wingspan is 11.360 meters (37 feet, 3.24 inches) and the overall height is 4.730 meters (15 feet, 6.22 inches). They have an area of 38 square meters (409 square feet). The wings’ leading edges are swept aft to 42°. They have approximately 5° anhedral. The two vertical fins are tilted outboard 6° and their leading edges are swept to 50°. The horizontal stabilizers are swept to 47° 30′.

The fighter has a basic weight of 15,775 kilograms (34,778 pounds) with full internal fuel and a centerline tank. Its maximum takeoff weight is 18,480 kilograms (40,741 pounds).

MiG 29 three-view illustration with dimensions

The fighter is powered by two Klimov RD-33 engines. The RD-33 is a two-spool, axial-flow, afterburning turbofan with a 13 stage compressor section (4 low- and 9 high-pressure stages) and a two-stage turbine (1 high- and 1 low-pressure stages). It has a military power rating of 49.43 kilonewtons (11,111 pounds of thrust), and 81.40 kilonewtons (18,298 pounds) with afterburner. The RD-33 is 1.040 meters (3 feet, 6.95 inches) in diameter, 4.229 meters (13 feet, 10.50 inches) long, and weighs 1,055 kilograms (2,326 pounds).

The MiG 29 has a maximum speed of Mach 2.25 and a service ceiling of 59,100 feet (18,013 meters). Maximum range with internal fuel is 1,430 kilometers (888 miles).

Armament consists of one Gryazev-Shipunov GSh-301 30mm autocannon with 150 rounds of ammunition, and a combination of air-to-air missiles, rockets or bombs carried on underwing pylons or fuselage hard points.

More than 1,600 MiG 29s have been built.

Mikoyan MiG-29SMT RF-92934 (“22 Red”), Russian Air Force. (Alex Beltyukov/Wikipedia)

¹ FAI Record File Number 2554

© 2019, Bryan R. Swopes

 

26 April 1962

Lockheed test pilot Louis W. Schalk, Jr. (Lockheed)
Lockheed test pilot Louis W. Schalk, Jr. (Lockheed Martin)

26 April 1962: At a non-existent location in the Mojave Desert of Nevada, Lockheed Chief Test Pilot Louis Wellington (“Lou”) Schalk, Jr., was scheduled to take the first Oxcart for a high-speed taxi test on the specially constructed 8,000-foot (2.44 kilometer) runway. However, he had received secret, specific instructions from designer Kelly Johnson to take the craft, known as “Article 121,” airborne.

Lou Schalk roared down the runway and lifted off. He flew at about 20 feet for two miles. The super-secret aircraft was oscillating badly so he set it down straight ahead on the dry lake bed and disappeared into a cloud of dust and flying sand. Johnson said that it “was horrible to watch.” A few minutes later, the needle nose of Article 121 appeared out of the dust as Schalk taxied back to the runway. It turned out that some equipment had been hooked up backwards. Subsequent flights were made without difficulty.

This was the actual first flight of the Central Intelligence Agency’s Top Secret A-12 reconnaissance aircraft. The “official” first flight would come several days later.

Lockheed A-12 60-6924 lands at Groom Lake, NV, after its first flight, 30 April 1962. (Lockheed)
Lockheed A-12 60-6924 lands at Groom Lake, NV, after its first flight, 30 April 1962. (Lockheed Martin)

Designed as the successor to the Agency’s subsonic U-2 spy plane, the twin-engine  jet was capable of flying more than Mach 3 (over 2,000 miles per hour/3,218.7 kilometers per hour) and higher than 80,000 feet (24,384 meters). Built by Lockheed’s “Skunk Works,” the new airplane wasn’t “state of the art,” it was well beyond the state of the art. New materials were developed. New equipment designed and built. New manufacturing processes were invented.

The A-12, developed under the code name “Oxcart,” was unlike anything anyone had ever seen. The first A-12 was referred to as Article 121. “A” = “Article.” “12-” is for A-12. “-1” is for the first production aircraft. So you get “Article 121.” What could be simpler?

The A-12 was so fast and could fly so high that it was invulnerable to any defense. No missile or aircraft or gun could reach it.

Lockheed A-12 Oxcarts and YF-12As at Groom Lake, Nevada. (Central Intelligence Agency)
Lockheed A-12 Oxcarts and YF-12As at Groom Lake, Nevada. (Central Intelligence Agency)

Thirteen A-12s were built for the CIA.  Two M-21 variants, built to carry the Mach 4 D-21 drone, were also produced. An interceptor version was developed for the Air Force as the YF-12A.

Ninety-three Lockheed F-12B interceptors were ordered though Secretary of Defense Robert S. McNamara  refused to release the funding for production. After three years, the order was cancelled. The Air Force liked the A-12, however, and ordered 32 of the more widely known two-place SR-71A “Blackbird” reconnaissance ships.

Today, Article 121 is on display at the Blackbird Airpark, an annex of the Air Force Flight Test Museum, Edwards Air Force Base, California.

Lockheed A-12 60-6924 at the Blackbird Airpark, Air Force Plant 42, Palmdale, California. (© 2012, Bryan R. Swopes)
Lockheed A-12 60-6924 at the Blackbird Airpark, Air Force Plant 42, Palmdale, California. (© 2012, Bryan R. Swopes)

© 2016, Bryan R. Swopes

26 April 1948

est Pilot George Welch flying the prototype North American Aviation XP-86 Sabre, 45-59597. (U.S. Air Force)
North American Aviation test pilot George S. Welch, flying the first of three XP-86 prototypes, serial number 45-59597. (North American Aviation, Inc.)

26 April 1948: At Muroc Field (now known as Edwards Air Force Base), in the high desert of southern California, North American Aviation test pilot George Welch put the prototype XP-86 Sabre, 45-59597, into a 40° dive and broke the Sound Barrier. It is only the second U.S. aircraft to fly supersonic. The first was the Bell X-1, piloted by Chuck Yeager, only a few months earlier.

Or, maybe not.

In his book, Aces Wild: The Race For Mach 1, fellow North American Aviation test pilot Albert W. Blackburn makes the case that George Welch had taken the prototype XP-86 Sabre supersonic on its first flight, 1 October 1947, and that he had done so three times before Chuck Yeager first broke the Sound Barrier with the Bell X-1 rocketplane, 14 October 1947. Blackburn described two runs through the NACA radar theodolite with speeds of Mach 1.02 and 1.04 on 13 November 1947.

Mr. Blackburn speculates—convincingly, in my opinion—that Secretary of the Air Force W. Stuart Symington, Jr., ordered that Welch’s excursions beyond Mach 1 were to remain secret. However, during a radio interview, British test pilot Wing Commander Roland Prosper (“Bee”) Beamont, C.B.E, D.S.O. and Bar, D.F.C. and Bar, stated that he had flown through the Sound Barrier in the number two XP-86 Sabre prototype (45-59598). Once that news became public, the U.S. Air Force released a statement that George Welch had flown beyond Mach 1 earlier, but gave the date as 26 April 1948.

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)
Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)

It wasn’t long after the first flight of the XP-86 on October 1, 1947, that Welch dropped into Horkey’s [Edward J. Horkey, an aerodynamicist at North American Aviation] office at the Inglewood plant. He wanted to talk about his recent flight and some “funny” readings in the airspeed indicator. He had made a straight-out climb to more than 35,000 feet. Then, turning back toward Muroc Dry Lake, he began a full-power, fairly steep descent.

“I started at about 290 knots,” Welch was explaining to Horkey. “In no time I’m at 350. I’m still going down, and I’m still accelerating but the airspeed indicator seems stuck like there’s some kind of obstruction in the pitot tube. I push over a little steeper and by this time I’m through 30,000 feet. All of a sudden, the airspeed indicator flips to 410 knots. The aircraft feels fine, no funny noises, no vibration. Wanted to roll off to the left, but no big deal. Still, I leveled out at about 25,000 and came back on the power. The airspeed flicked back to 390. What do you think?”

“. . . You may be running into some Mach effects. . . .”

— Aces Wild: The Race For Mach 1, by Al Blackburn, Scholarly Resources Inc., Wilmington, Delaware, 1999, at Pages 147–148.

The “funny” reading of the airspeed indicator became known as the “Mach jump.” George Welch was the first to describe it.

The Sabre became a legendary jet fighter during the Korean War. 9,860 were built by North American, as well as by licensees in Canada, Australia and Japan.

George Welch had been recommended for the Medal of Honor for his actions as a P-40 Warhawk fighter pilot in Hawaii, December 7, 1941. He was killed while testing a North American Aviation F-100A Super Sabre, 12 October 1954.

Test pilot George S. Welch with a North American Aviation F-86 Sabre. (San Diego Air and Space Museum Archives)

© 2018, Bryan R. Swopes