Tag Archives: Tony LeVier

16 April 1949

Tony Levier and  Glenn Fulkerson in the prototype Lockheed YF-94. (Lockheed Martin)

16 April 1949: At Van Nuys Airport, California, test pilot Tony LeVier and flight test engineer Glenn Fulkerson made the first flight of the Lockheed YF-94 prototype, serial number 48-356. The aircraft was the first jet-powered all-weather interceptor in service with the United States Air Force and was the first production aircraft powered by an afterburning engine.

Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)

Two prototypes were built at Lockheed Plant B-9, located on the east side of Van Nuys Airport. Two TF-80C-1-LO (later redesignated T-33A) Shooting Star two-place trainers, 48-356 and 48-373, were modified with the installation of air intercept radar, an electronic fire control system, radar gun sight, four Browning AN-M3 .50-caliber (12.7 × 99 NATO) aircraft machine guns and a more powerful Allison J33-A-33 turbojet engine with water-alcohol injection and afterburner. The rear cockpit was equipped as a radar intercept officer’s station.

The prototype Lockheed YF-94 test fires its four .50-caliber guns at Van Nuys, California. (Lockheed Martin)

It was initially thought that the project would be a very simple, straightforward modification. However, the increased weight of guns and electronics required the installation of a more powerful engine than used in the T-33A. The new engine required that the aft fuselage be lengthened and deepened. Still, early models used approximately 80% of the parts for the F-80C fighter and T-33A trainer. The Air Force ordered the aircraft as the F-94A. Improvements resulted in an F-94B version, but the definitive model was the all-rocket-armed F-94C Starfire.

The Allison J33-A-33 was a single-shaft turbojet engine with a single-stage centrifugal-flow compressor, 14 combustion chambers and, a single-stage axial flow turbine. The engine was rated at 4,600 pounds of thrust (20.46 kilonewtons) and 6,000 pounds (26.69 kilonewtons) with afterburner. The J33-A-33 was 17 feet, 11.0 inches (5.461 meters) long, 4 feet, 1.3 inches (1.252 meters) in diameter and weighed 2,390 pounds (1,084 kilograms).

Originally a P-80C Shooting Star single-place fighter, 48-356 had been modified at Lockheed Plant B-9 in Van Nuys to become the prototype TF-80C two-place jet trainer (the designation was soon changed to T-33A), which first flew 22 March 1948. It was then modified as the prototype YF-94. 48-356 was later modified as the prototype F-94B. It is in the collection of the Air Force Flight Test Museum, Edwards Air Force Base, and is in storage awaiting restoration.

Probably the best-known Lockheed F-94 variant is the all-rocket-armed F-94C Starfire. (Lockheed Martin)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 March 1948

Tony LeVier in the cockpit of Lockheed TP-80C-1-LO 48-356, the prototype T-33A Shooting Star two-place trainer.
Tony LeVier in the cockpit of Lockheed TP-80C-1-LO 48-356, the prototype T-33A Shooting Star two-place trainer. (Jet Pilot Overseas)

22 March 1948: Just over one year since being injured when the prototype P-80A was cut in half by a disintegrating turbojet engine, Lockheed test pilot Anthony W. (“Tony”) LeVier made the first flight of the prototype TP-80C-1-LO, serial number 48-356, a two-place jet trainer. The airplane was redesignated TF-80C Shooting Star on 11 June 1948 and to T-33A, 5 May 1949.

Adapted from a single-seat P-80C Shooting Star jet fighter, Lockheed engineers added 38.6 inches (0.980 meter) to the fuselage forward of the wing for a second cockpit, instrumentation and flight controls, and another 12 inches (0.305 meter) aft. A more powerful engine, an Allison J33-A-23 with 4,600 pounds of thrust, helped offset the increased weight of the modified airplane. Internal fuel capacity decreased 72 gallons (273 liters) to 353 (1,336 liters).

The Lockheed T-33A Shooting Star is 37.72 feet (11.50 meters) long, with a wingspan of 37.54 feet (11.44 meters), and overall height of 11.67 feet (3.56 meters). The wings a total area of 234.8 square feet (21.8 square meters). They have an angle of incidence of 1° with -1° 30′ of twist and 3° 49.8′ dihedral. The “T-Bird” has a basic weight of 9,637 pounds (4,371 kilograms), and gross weight of 15,280 pounds (6,931 kilograms).

Lockheed TP-80C-1-LO 48-356 prototype, with P-80C-1-LO Shooting Star 47-173, at Van Nuys Airport, California. (Lockheed Martin)

Originally produced with the J35-A-23 engine, the T-33 fleet was later standardized with the J35-A-35 engine. The J33 was a development of an earlier Frank Whittle-designed turbojet. It used a single-stage centrifugal-flow compressor, eleven combustion chambers and a single-stage axial-flow turbine section. The J33-A-35 had a Normal Power rating of 3,900 pounds of thrust (17.348 kilonewtons) at 11,250 r.p.m. (96%), and 4,600 pounds (20.462 kilonewtons) at 11,750 r.p.m. (100%). It was 107 inches (2.718 meters) long, 50.5 inches (1.283 meters) in diameter, and weighed 1,820 pounds (826 kilograms). The engine was 16 feet, 3.5 inches (4.966 meters) long, 3 feet, 1.0 inches (0.940 meters) in diameter and weighed 2,830 pounds (1,284 kilograms).

Cruise speed for maximum range is 0.68 Mach. The maximum speed is 505 knots (581 miles per hour/935 kilometers per hour), or 0.8 Mach, whichever is lower. Service ceiling 44,700 feet (1,3625 meters). The maximum range is 1,071 nautical miles (1,232 statute miles/1,983 kilometers).¹

While the P-80 fighter was armed with six .50-caliber machine guns in the nose, the trainer was usually unarmed. Two machine guns could be installed for gunnery training.

In production for 11 years, 5,691 T-33As were built by Lockheed, with licensed production of another 656 by Canadair Ltd., and 210 by Kawasaki Kokuki K.K. For over five decades, the “T-Bird” was used to train many tens of thousands of military pilots worldwide.

TF-80C 48-356 was rebuilt as the prototype for Lockheed’s YF-94A interceptor, and then modified further to the F-94B. Sources have reported it as being stored at Edwards Air Force Base, California.

Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)
Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)

¹ Specifications and performance data from T-33A PERFORMANCE EVALUATION, AFFTC-TR-61-22, May 1961,  Air Force Flight Test Center, Edwards Air Force Base, California. The Project Pilot was Captain Thomas P. Stafford, U.S. Air Force. Stafford was next selected for the NASA Gemini Program, and flew Gemini 6A and Gemini 9. He commanded Apollo 10.

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 March 1945

Tony LeVier and the first prototype Lockheed XP-80A, 44-83021, in flight over southern California’s high desert, 1945. (Lockheed Martin)
Anthony W. (“Tony”) LeVier

20 March 1945: Tony LeVier was conducting a test flight of the first prototype Lockheed XP-80A, 44-83021, near Muroc Army Air Field (now known as Edwards Air Force Base).

The XP-80A was developed from the original XP-80 prototype, but was larger to incorporate a more powerful General Electric I-40 turbojet engine in place of the original Allis-Chalmers J36 (a license-built version of the British Halford H.1B).

The I-40 was a single-shaft turbojet which used a double-inlet, single-stage, centrifugal-flow compressor, fourteen straight-through combustors and a single-stage axial-flow turbine. The engine had a maximum speed of 11,500 r.p.m. and produced 4,000 pounds of thrust (17.79 kilonewtons). The I-40 was 48 inches (1.22 meters) in diameter and weighed 1,820 pounds (826 kilograms). The I-40 would be produced by Allison Division of General Motors as the J33 series.

General Electric I-40 turbojet engine cross section. (NASA)

At 15,000 feet (4,572 meters), LeVier put the XP-80A into a dive, intending to level off at 10,000 feet (3,048 meters) for a high-speed run. However, at 11,000 feet (3,353 meters), the single-stage turbine inside the jet engine failed and fragments tore through the prototype’s fuselage. The tail section of the airplane was cut off and the XP-80A went out of control.

An example of a turbine failure in a Lockheed P-80. (San Diego Air and Space Museum)

The XP-80A was not equipped with an ejection seat and LeVier had difficulty getting out, but finally escaped at about 4,000 feet (1,219 meters).

44-83021 crashed near the town of Rosamond and was completely destroyed. Tony LeVier’s parachute was swinging and he was severely injured when he hit the ground. His injuries kept him from flying for the next six months.

Lockheed XP-80A 44-83021 (U.S. Air Force)
Lockheed XP-80A 44-83021 (U.S. Air Force)

The Lockheed XP-80A was a single-place, single engine prototype fighter. It was 34 feet, 6 inches (10.516 meters) long with a wingspan of 39 feet, 0 inches (11.887 meters) and overall height of 11 feet, 4 inches (3.454 meters). It had an empty weight of 7,225 pounds (3,277 kilograms) and gross weight of 9,600 pounds (4,354 kilograms).

Armament consisted of six Browning .50-caliber AN-M2 machine guns with 300 rounds of ammunition per gun.

Two XP-80As were built. These were followed by twelve YP-80A Shooting Star service test aircraft. The Lockheed P-80A Shooting Star was ordered into production with an initial contract for 500 aircraft. This was soon followed by a second order for 2,500 fighters.

Wreckage of XP-80A 44-83021 loaded on a flat bed trailer. (U.S. Air Force)
Wreckage of XP-80A 44-83021 loaded on a flat bed trailer. (U.S. Air Force)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

4 March 1954

Lockheed XF-104 prototype, 53-7786, photographed 5 March 1954. (Lockheed Martin)

4 March 1954: Lockheed test pilot Anthony W. LeVier takes the prototype XF-104 Starfighter, 53-7786, for its first flight at Edwards Air Force Base in the high desert of southern California. The airplane’s landing gear remained extended throughout the flight, which lasted about twenty minutes.

Lockheed XF-104 53-7786 on Rogers Dry Lake, Edwards Air force Base, California. (U.S. Air Force)
Lockheed XF-104 53-7786 rolling out on Rogers Dry Lake, Edwards Air Force Base, California. This photograph shows how short the XF-104 was in comparison to the production F-104A. Because of the underpowered J65-B-3 engine, there are no shock cones in the engine inlets. (U.S. Air Force via Jet Pilot Overseas)

Designed by the legendary Kelly Johnson, the XF-104 was a prototype Mach 2+ interceptor and was known in the news media of the time as “the missile with a man in it.”

Tony LeVier was a friend of my mother’s family and a frequent visitor to their home in Whittier, California.

Legendary aircraft designer Clarence L. “Kelly” Johnson shakes hands with test pilot Tony LeVier after the first flight of the XF-104 at Edwards Air Force Base. (Lockheed via Mühlböck collection)

There were two Lockheed XF-104 prototypes. Initial flight testing was performed with 083-1001 (USAF serial number 53-7786). The second prototype, 083-1002 (53-7787) was the armament test aircraft. Both were single-seat, single-engine supersonic interceptor prototypes.

The wing of the Lockheed XF-104 was very thin, with leading and trailing edge flaps and ailerons. (San Diego Air & Space Museum)

The XF-104 was 49 feet, 2 inches (14.986 meters) long with a wingspan of 21 feet, 11 inches (6.680 meters) and overall height of 13 feet, 6 inches (4.115 meters). The wings had 10° anhedral. The prototypes had an empty weight of 11,500 pounds (5,216 kilograms) and maximum takeoff weight of 15,700 pounds (7,121 kilograms).

Lockheed XF-104 53-7786 (San Diego Air & Space Museum)

The production aircraft was planned for a General Electric J79 afterburning turbojet but that engine would not be ready soon enough, so both prototypes were designed to use a Buick-built J65-B-3, a licensed version of the British Armstrong Siddeley Sapphire turbojet engine. The J65-B-3 was a single-shaft axial-flow turbojet with a 13-stage compressor section and 2-stage turbine. It produced 7,200 pounds of thrust (32.03 kilonewtons) at 8,200 r.p.m. The J65-B-3 was 9 feet, 7.0 inches (2.921 meters) long, 3 feet, 1.5 inches (0.953 meters) in diameter, and weighed 2,696 pounds (1,223 kilograms).

On 15 March 1955, XF-104 53-7786 reached a maximum speed of Mach 1.79 (1,181 miles per hour, 1,900 kilometers per hour), at 60,000 feet (18,288 meters).

XF-104 53-7786 was destroyed 11 July 1957 when the vertical fin was ripped off by uncontrollable flutter. The pilot, William C. Park, safely ejected.

Lockheed XF-104 55-7786. (Lockheed Martin)
Lockheed XF-104 53-7786 with wingtip fuel tanks. (Lockheed Martin)

Lockheed Martin has an excellent color video of the XF-104 first flight on their web site at:

http://www.lockheedmartin.com/us/100years/stories/f-104.html

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

5 October 1954

Lockheed XF-104 Starfighter 083-1002, serial number 53-7787, the second prototype, in flight near Edwards AFB. (U.S. Air Force)

5 October 1954: Chief Engineering Test Pilot Tony LeVier made the first flight in the second prototype Lockheed XF-104 Starfighter, 53-7787, at Edwards Air Force Base in the high desert of southern California. This was the armament test aircraft and was equipped with a General Electric T171 Vulcan 20mm Gatling gun. This six-barreled gun was capable of firing at a rate of 6,000 rounds per minute.

The XF-104 was 49 feet, 2 inches (14.986 meters) long with a wingspan of 21 feet, 11 inches (6.680 meters) and overall height of 13 feet, 6 inches (4.115 meters). The prototypes had an empty weight of 11,500 pounds (5,216 kilograms) and maximum takeoff weight of 15,700 pounds (7,121 kilograms).

While the first prototype, 53-7776, was equipped with a Buick J65-B-3 turbojet engine, the second used a Wright Aeronautical Division J65-W-6 with afterburner. Both were improved derivatives of the Armstrong Siddely Sa.6 Sapphire, built under license. The J65 was a single-shaft axial-flow turbojet with a 13-stage compressor and 2-stage turbine. The J65-B-3 was rated at 7,330 pounds of thrust, and the J65-W-6, rated at 7,800 pounds (34.70 kilonewtons), and 10,500 pounds (46.71 kilonewtons) with afterburner.

The XF-104 had a maximum speed of 1,324 miles per hour (2,131 kilometers per hour), a range of 800 miles (1,287 kilometers) and a service ceiling of 50,500 feet (15,392 meters).

53-7787 was lost 19 April 1955 when it suffered explosive decompression at 47,000 feet (14,326 meters) during a test of the T171 Vulcan gun system. The lower escape hatch had come loose due to an inadequate latching mechanism. Lockheed test pilot Herman R. (“Fish”) Salmon was unable to find a suitable landing area and ejected at 250 knots (288 miles per hour/463 kilometers per hour) and 15,000 feet (4,572 meters). The XF-104 crashed 72 miles (117 kilometers) east-northeast of Edwards Air Force Base. Salmon was found two hours later, uninjured, about 2 miles (3.2 kilometers) from the crash site.

Tony LeVier with the XF-104 armament test prototype, 53-7787, at Edwards AFB, 1954. LeVier is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with K-1 helmet. (U.S. Air Force)

The YF-104A pre-production aircraft and subsequent F-104A production aircraft had many improvements over the two XF-104 prototypes. The fuselage was lengthened 5 feet, 6 inches (1.68 meters). The J65 engine was replaced with a more powerful General Electric J79-GE-3 turbojet. There were fixed inlet cones added to control airflow into the engines. A ventral fin was added to improve stability.

Lockheed F-104A-15-LO Starfighters 56-0769 and 56-0781. (Lockheed Martin)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather