Tag Archives: World Record for Speed Over a Closed Circuit of 100 Kilometers

6 October 1961

Jackie Cochran with her record-setting Northrop T-38A-30-NO Talon, 60-0551, at Edwards Air Force Base, 1961. (U.S. Air Force)
Jackie Cochran with her record-setting Northrop T-38A-30-NO Talon, 60-0551, at Edwards Air Force Base, 1961. (U.S. Air Force)

6 October 1961: During a two-month series of speed, distance and altitude record attempts at Edwards Air Force Base, California, Jackie Cochran set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 100 Kilometers Without Payload, flying a Northrop T-38A-30-NO Talon, 60-0551. Her average speed over the 62-mile circular course was 1,262.188 kilometers per hour (784.287 miles per hour).¹

Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)

Jackie’s friend, famed Air Force test pilot Colonel Chuck Yeager, kept notes during the series of record attempts:

September 29: Edwards AFB. Flew the aircraft today to include a practice run on the 100 kilometer course. Jackie did a fine job at 1.2 Mach. Looks like this will be a piece of cake. Aircraft was okay. Average speed 742 miles per hour. Jackie was in the altitude chamber today with the pressure suit (CSU 4/P). Everything went fine and maximum altitude was 65,000 feet. This is the first time a woman was taken up in the chamber in a pressure suit. CSU 4/P was the type of suit.

October 3: Tried a run today but weather moved in from 26,000 to 37,000 feet. Very good landing. Airspeed system iced up and Jackie stalled the aircraft at 35,000 feet. Made a no-sweat recovery.

October 4: Ran the 100 kilometer for record at 1 pm. The first run wasn’t too good but had an average speed of 763 mph. A pylon was cut so the run was voided. Second run was 740 mph. Very poor. Another flight was made at 5:30 pm but both runs were pretty sorry. Jackie was a little late on all of the corrections. Jackie doesn’t seem to be in too good a physical or mental state.

October 5: I flew in the backseat of the T-38 with Jackie on a practice run of the 100 kilometer. I talked her around the course 2 times with a little help on the stick. First run was 782 mph and second run was 787. I think I know what has been Jackie’s trouble on the 100 km. During the flight as she starts gaining a little altitude, she lets off on the back pressure on the stick to stop climbing and this causes the turn to become larger. Jackie and I spent two hours talking this over. She finally understands that in order to fly a constant circle, if the airplane starts to climb, she must increase the bank angle and let off on the back pressure a little and let the nose drop but still hold the same rate of turn. This is what makes the 100 km so hard to fly. Jackie still has a touch of the flu.

October 6: Jackie felt better today and after a delay caused by communication trouble, she flew one of the most perfect runs that has ever been flown on the 100 km course. She learned her lesson well. The record speed was 784 mph. She held 1/4 mile outside the course the entire trip. I was very pleased to watch the reaction of the timers and radar people. I think they expected another 10 or 15 trips like the F-105 tricks. She made one hell of a good flight.

— Brigadier General Charles E. Yeager, U.S. Air Force, quoted in Jackie Cochran: An Autobiography, by Jacqueline Cochran and Maryann Bucknum Brinley, Bantam Books, New York, 1987, Pages 306–307.

Jackie Cochran and Chuck Yeager at Edwards Air Force Base, California, after a flight in the record-setting Northrop T-38A Talon. (U.S. Air Force)
Jackie Cochran and Chuck Yeager at Edwards Air Force Base, California, after a flight in the record-setting Northrop T-38A Talon. (U.S. Air Force)

The Northrop T-38A Talon is a two-place, twin-engine jet trainer capable of supersonic speed. It is 46 feet, 4 inches (14.122 meters) long with a wingspan of 25 feet, 3 inches (7.696 meters) and overall height of 12 feet, 10 inches (3.912 meters). The trainer’s empty weight is 7,200 pounds (3,266 kilograms) and the maximum takeoff weight is 12,093 pounds (5,485 kilograms).

The T-38A is powered by two General Electric J85-GE-5 turbojet engines. The J85 is a single-shaft axial-flow turbojet engine with an 8-stage compressor section and 2-stage turbine. The J85-GE-5 is rated at 2,680 pounds of thrust (11.921 kilonewtons), and 3,850 pounds (17.126 kilonewtons) with afterburner. It is 108.1 inches (2.746 meters) long, 22.0 inches (0.559 meters) in diameter and weighs 584 pounds (265 kilograms).

Northrop T-38A-30-NO Talon at Edwards Air Force Base, California. (U.S. Air Force)

It has a maximum speed of Mach 1.08 (822 miles per hour, 1,323 kilometers per hour) at Sea Level. The Talon’s service ceiling of 55,000 feet (16,764 meters) and it has a maximum range of 1,093 miles (1,759 kilometers).

In production from 1961 to 1972, Northrop has produced nearly 1,200 T-38s. As of January 2014, the U.S. Air Force had 546 T-38A Talons in the active inventory. It also remains in service with the U.S. Navy, and the National Aeronautics and Space Administration.

Jackie Cochran’s record-setting T-38 is in the collection of the Smithsonian Institution, National Air and Space Museum.

Northrop T-38A Talon 60-0551, now twenty-one years old, sits on the ramp at the Sacramento Air Logistics Center, McClellan Air Force Base, Sacramento, California, 1981. (Photograph by Gary Chambers, used with permission)
Northrop T-38A Talon 60-0551, now twenty-one years old, sits on the ramp at the Sacramento Air Logistics Center, McClellan Air Force Base, Sacramento, California, 1981. (Photograph by Gary Chambers, used with permission)

¹ FAI Record File Number 13036

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

26 September 1927

Flight Lieutenant Sidney N. Webster, RAF, leads the Schneider Trophy Race with his Supermarine S.5 N220. (Unattributed)
Flight Lieutenant Sidney N. Webster, RAF, leads the Schneider Trophy Race with the blue and silver Supermarine S.5 racer, N220. (Unattributed)
Flight Lieutenant Sidney Norman Webster, Royal Air Force.
Flying Officer Sidney Norman Webster, Royal Air Force, circa 1919. (Unattributed)

26 September 1927: Flight Lieutenant Sidney Norman Webster, of the Royal Air Force High-Speed Flight, won the 1927 Schneider Trophy Race, flying a Supermarine S.5 float plane, number N220.

The course consisted of seven laps of a 50-kilometer course at Venice, Italy. Webster completed the race in 46 minutes, 20.3 seconds, averaging 281.656 miles per hour (453.281 kilometers per hour). He established a new Fédération Aéronautique Internationale (FAI) World Record for Speed Over 100 Kilometers.¹

Webster’s teammate, Flight Lieutenant Oswald Worsley, flying S.5 N219, placed second with a time of 47:46.7 and average speed of 272.91 miles per hour (439.21 kilometers per hour).

With its engine running, this Supermarine S.5 shows off its very clean lines.
Reginald Joseph Mitchell, C.B.E., F.R.Ae.S.

The Supermarine S.5 was designed by Reginald Mitchell, who would later design the famous Supermarine Spitfire fighter. N220 was a single-place, single-engine, low-wing monoplane equipped with pontoons for landing and taking off on water. The airplane was of all metal construction, primarily duralumin (a hardened alloy of aluminum and copper). The airplane used surface radiators in the skin of the wings for engine cooling.

The S.5 had a length of 24 feet, 3½ inches (7.404 meters), wingspan of 26 feet, 9 inches (8.153 meters) and height of 11 feet, 1 inch (3.378 meters). The S.5’s empty weight was 2,680 pounds (1,216 kilograms) and gross weight was 3,242 pounds (1,471 kiograms).

Supermarine S.5 N220 at Venice, Italy, September 1927. (FlightGlobal)
Supermarine S.5 N220 at Venice, Italy, September 1927. (FlightGlobal)

Webster’s Supermarine S.5 was powered by a water-cooled, naturally-aspirated 1,461.135-cubic-inch-displacement (23.943 liter) D. Napier and Son, Ltd., Lion Mk.VIIB, serial number 63106, a double-overhead camshaft (DOHC) twelve-cylinder engine with three banks of four cylinders. This was called a “Triple-Four,” “W-12,” or “broad arrow” configuration. The Napier Lion had an included angle of 60° between each cylinder bank.

D. Napier and Son, Ltd., Lion VII “broad arrow” 12-cylinder aircraft engine.

The Mk.VIIB had four valves per cylinder and a compression ratio of 10:1. It produced 875 horsepower at 3,300 r.p.m. The Lion VIIB drove a two-bladed fixed-pitch propeller through a gear reduction unit with a ratio of 0.765:1. (Worsley’s Supermarine S.5, N219, was equipped with a 900 horsepower direct-drive Mk.VIIA.) The engine used a mixture of 75% gasoline, 25% benzol, and 0.22% “T.E.L. dope” (tetraethyl lead) additive. The Napier Lion Mk.VII was 5 feet, 6¼ inches (1.683 meters) long, 3 feet, 2½ inches (0.978 meters) wide and 2 feet, 10½ inches (0.876 meters) high. The geared Mk.VIIB was heavier than the direct drive Mk.VIIA, and weighed 920 pounds (417 kilograms).

The Supermarine S.5 had a maximum speed of 319.57 miles per hour (514.3 kilometers per hour).

“Webbie” Webster had been awarded the Air Force Cross on 2 January 1922. He received a second award, signified by a “bar” added the the ribbon of his medal, 11 October 1927:

Air Ministry.

11th October, 1927.

     The KING has been graciously pleased to approve the award of a Bar to the Air Force Cross held by Flight Lieutenant Sidney Norman Webster, A.F.C., in recognition of his achievement winning the recent “Schneider Cup” Air Race.

Flight Lieutenant Sidney N. Webster, RAF, stands with his winning Supermarine S.5, N220, at the Woolston factory. Designer Reginald Mitchel is in the front row at center.
Flight Lieutenant Sidney N. Webster, RAF, stands with his winning Supermarine S.5, N220, at the Woolston factory. Designer Reginald Mitchell is in the front row at center.

In January 1946, Air Commodore Webster was appointed Commander of the Most Excellent Order of the British Empire. He was promoted to Air Vice Marshal in 1949 and retired from the Royal Air Force 12 August 1950.

Air Vice Marshal Sidney Norman Webster, CBE, AFC and Bar, Royal Air Force, died 5 April 1984 at the age of 83 years.

Schneider trophy at the Science Museum, London. (Wikipedia)
Coupe d’Aviation Maritime Jacques Schneider (the Schneider Cup) at the Science Museum, London. (Wikipedia)

¹ FAI Record File Number 11070

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

7 September 1929

Flying Officer Wagforth boards his Supermarine S.6, N247, race number 2
Flying Officer H.R.D. Wagforth boards his Supermarine S.6, N247, race number 2. The Rolls-Royce Type R engine is “ticking over” at 475 r.p.m. (Unattributed)

7 September 1929: Flying Officer Henry Richard Danvers Waghorn, a pilot with the  Royal Air Force High-Speed Flight based at RAF Calshot, flew a Supermarine S.6, N247, to win the Coupe d’Aviation Maritime Jacques Schneider (Schneider Cup) race.

The race was the eleventh in a series of annual or semiannual races which were first held in 1913, specifically for seaplanes. Teams from several nations, France, Great Britain, Italy and the United States, competed with float-equipped airplanes built specifically for the races. The national team which won three consecutive races would win the series and take home the Trophy.

The 1929 race was held over The Solent, a body of water between the harbor city of Portsmouth, England, and the Isle of Wight. The course was a four-sided polygon of 50 kilometers (31.07 statute miles). Competitors would make seven circuits of the course, with all left-hand turns, for a total distance of 350 kilometers (217.48 statute miles).

 1929 Schneider Trophy race course, from Flight, 22 August 1928 at Page 895
1929 Schneider Trophy race course, from “Flight,” 22 August 1928 at Page 895

By 1929, the expense of fielding these teams of technologically-advanced airplanes had caused both France and the United States to drop out. Italy entered three Macchi seaplanes and England entered two Supermarine S.6s and a Gloster VI. The Gloster was powered by the very successful Napier Lion “broad arrow” 12-cylinder engine, while the S.6 was equipped with the new Rolls-Royce Type R V-12. The second Supermarine S.6, flown by Flying Officer Richard L.R. Atcherley, was disqualified for crossing inside a pylon at a turn during the race. Italy’s team had one Aeronautica Macchi M.52, which had flown in the 1927 race, powered by a Fiat Aviazone AS.3 V-12, and two new Aeronautica Macchi M.67s, both of which were equipped with the Isotta Fraschini Asso 1000, a “W-18” 18-cylinder broad arrow engine. Great Britain’s racers were painted blue and silver. The Italian aircraft were painted bright red.

All pilots were military officers of the Regia Aeronautica and the Royal Air Force.

The race was actually a time trial. Beginning at 2:00 p.m. on Saturday, individual aircraft would start at 20-minute intervals. There would be only two aircraft on the course at any time. Flying Officer Waghorn was the first to takeoff.

Supermarine S.6 N247. (Unattributed)
Supermarine S.6 N247. (Unattributed)

FLIGHT reported:

     Precisely at 2 p.m. the boom of the starting gun on the Medea was heard faintly, and exactly two minutes later Waghorn in the Supermarine Rolls-Royce S.6 (No.2) crossed the starting line. Obviously Waghorn had wasted no time in getting into the air. He roared past at tremendous speed, but certainly the impression was not one of some 360 m.p.h., which is what the S.6 must actually have been doing at the time. And the Rolls-Royce racing engine managed to give off its 1,800 or so h.p. with surprisingly little fuss. The large gear ratio resulted in the propeller running relatively slowly and actually from certain points of view, one could see the propeller blades, and not merely a shining shimmering blur marking the disc.

     Flying at a constant height of some 200 ft., Waghorn continued on his first lap, and as he sped past along the Hampshire shore the excitement grew intense. What would the speed of the first lap be? That was the question every one was asking. That first lap would give a fair indication of the sort of speeds that could be expected in the contest. After a splendid turn around the West Cowes mark boat, the S.6 once more became, as it was seen by spectators on Ryde pier, a group of three dots approaching and growing larger at a promising rate. The machine roared across the line and disappeared towards the Seaview and Hayling Island mark boats. After a wait of a few minutes, Waghorn’s speed for the first lap was announced: 324 m.p.h. In other words, he not only established a world’s record for the 50-km. closed circuit, but had beaten the speed of de Bernardi over the 3-km. straight-line course! Well done. Oh, very well done! The next question was: “Would the Rolls-Royce engine stay the course?” Watching Waghorn speed around at the same height, lap after lap, the tension eased off. The lap speeds grew at a steady rate, from 324 to 329 and to 331!  . . . Then in the fourth lap the speed dropped slightly to 328. Was this a sign that the engine was “tiring”?

. . . Waghorn’s lap speeds were steady around 330 m.p.h., the sixth dropping to 327, but rising again in the seventh to 331.  As the S.6 crossed the finishing line the spectators drew a sigh of relief. The Rolls-Royce engine had “stood the racket” for 40 minutes and thus upheld the reputation of an old and famous firm. The average speed for the whole course was 328.63 m.p.h. . . .

FLIGHT, The Aircraft Engineer  and Airships, Special Schneider Trophy Report,  13 September 1929, at Pages 1008–1009

Photograph of 1929 Schneider Trophy Race scoreboard, in "Flight," 13 September 1929 at Page 1015
Photograph of 1929 Schneider Trophy Race scoreboard, in “Flight,” 13 September 1929 at Page 1015

Flying Officer Waghorn’s cumulative lap times were recorded as follows:

Lap 1    5 minutes, 45-1/5 seconds     324 miles per hour (521 km/h)

Lap 2    11 minutes, 25 seconds           329.54 miles per hour (530.34 km/h)

Lap 3    17 minutes, 02-4/5 seconds   331.1 miles per hour (532.9 km/h)

Lap 4    22 minutes, 43-4/5 seconds   328 miles per hour (528 km/h)

Lap 5    28 minutes, 22-4/5 seconds   329.93 miles per hour (530.97 km/h)

Lap 6    34 minutes, 04-4/5 seconds   327.04 miles per hour (526.32 km/h)

Lap 7    39 minutes, 42-4/5 seconds   330.91 miles per hour (532.55 km/h)

Dick Waghorn finished the course in 39:42.8, with an overall average speed of 325.63 miles per hour (528.88 kilometers per hour). He established a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a 100 kilometer Course, with an average speed over two consecutive race laps of 531.20 kilometers per hour (330.07 miles per hour).¹

Pilots of the 1929 British Schneider Cup Race team, left to right: Flying Officer H.R.D. Waghorn, race winner; Flying Officer T.H. Moon, Technical Officer; Flight Lieutenant D. D'Arcy A. Grieg; Squadron Leader Augustus Henry Orlebar, A.F.C., Flight Commander; Flight Lieutenant George Hedley Stainforth; Flying Officer Richard Llewellyn Roger Atcherley.' Several of these officers would rise to the rank of Air Vice Marshal.(Royal Air Force)
Pilots of the 1929 British Schneider Cup Race team, left to right: Flying Officer H.R.D. Waghorn, the race winner; Flying Officer T.H. Moon, Technical Officer; Flight Lieutenant David D’Arcy Alexander Grieg, D.F.C.; Squadron Leader Augustus Henry Orlebar, A.F.C., Flight Commander; Flight Lieutenant George Hedley Stainforth; Flying Officer Richard Llewellyn Roger Atcherley. Several of these officers would rise to the rank of Air Commodore, Air Vice Marshal and Air Marshal. (Royal Air Force)

Five days later, 12 September 1929, the High-Speed Flight commander, Squadron Leader Augustus Henry Orlebar, A.F.C., flew N247 to an FAI World Record for Speed Over a 3 Kilometer Course of 575.20 kilometers per hour (357.41 miles per hour).²

The pilots of the 1929 British Schneider Cup team were members of the RAF High-Speed Flight, based at RAF Calshot. With the exception of Squadron Leader Orlebar, all the pilots had been instructors at the Central Flying School at RAF Wittering. They trained on float planes after transfer to the High-Speed Flight when it was initially established at RAF Felixstowe, later moving to Calshot.

     Flying Officer H. R. D. Waghorn is a London man, having been born in Kensington in 1904. Educated at Wellington, he proceeded in 1922 as a cadet to the Royal Air Force College, Cranwell, where he was a contemporary of Flying Officer Atcherly.

     On graduating in 1924 he was posted to No. 17 (Fighter) Squadron, and after taking a flying instructor’s course in 1926 at the Central Flying School became an instructor there. He remained at the school until February of this year when he joined the High-Speed Flight. He is a noted skier.

FLIGHT, The Aircraft Engineer  and Airships, No. 1077 (No. 33. Vol. XXI.) 15 August 1929, at Page 875, Column 2

Screen Shot 2016-09-05 at 16.27.45

Air Ministry,

20th September 1929

ROYAL AIR FORCE.

     The KING has been graciously pleased to approve the award of the Air Force Cross to Flying Officer Henry Richard Danvers Waghorn in recognition of his achievement in winning the recent “Schneider Trophy” Air Race.

The London Gazette, Number 33536, Friday, 20 September 1929, at Page 6035, Column 2

Flight Lieutenant Henry Wichard Danvers Waghorn, AFC, Royal Air Force, died of injuries, 7 May 1931.

Supermarine S.6 N247 (John K. Shelton Collection)
Supermarine S.6 N247 (John K. Shelton Collection)

N247 was a Supermarine S.6, designed by the Reginald Joseph Mitchell, who would later design the legendary Supermarine Spitfire fighter of World War II. The racer was developed from Mitchell’s earlier S.4 and S.5 Schneider Cup racers, and built at the Supermarine Aviation Works, Ltd., Southampton, on the south coast of England. There were two, with the second S.6 carrying the identification N248.

The Supermarine S.6 was a single-place, single-engine, low-wing monoplane with two fixed pontoons as an undercarriage. It was of all-metal construction and used a high percentage of duralumin, a very hard alloy of aluminum and copper, as well as other elements. The float plane was 25 feet, 10 inches (7.874 meters) long, with a wingspan of 30 feet, 0 inches (9.144 meters) and height of 12 feet, 3 inches (3.734 meters). The S.6 had an  empty weight of 4,471 pounds (2,028 kilograms) and gross weight of 5,771 pounds (2,618 kilograms).

In an effort to achieve the maximum possible speed, aerodynamic drag was eliminated wherever possible. There were no radiator or oil cooler intakes. The wing surfaces were constructed of two thin layers of duralumin with a very small space between them. The engine coolant, a mixture of water and ethylene glycol, was circulated between these layers, which are known as surface radiators. The engine had a high oil consumption rate and the vertical fin was the oil supply tank. The skin panels also served as surface radiators. The fuselage panels were corrugated for strength, and several small parallel passages transferred lubricating oil from the fin tank to the engine, and further cooled the oil.

Rolls-Royce R and Supermarine S.6 (John K. Shelton Collection)
A Rolls-Royce Type R engine and the Supermarine S.6. The airplane’s designer, R.J. Mitchell, is near the center of the photograph. (John K. Shelton Collection)

While the previous design, the Supermarine S.5, used the very successful Napier Lion W-12 engine, the S.6 used a newly-designed Rolls-Royce Type R. This was a liquid-cooled, supercharged, 2,239.33-cubic-inch-displacement (36.696 liters) single overhead cam (SOHC) 60° V-12 with 4 valves per cylinder and a compression ratio of 6:1. The the supercharger could provide up to 18 pounds (p.s.i.), 1.24 bar, of boost. N247’s race engine, number R9, produced 1,900 horsepower at 2,900 r.p.m. (For the 1931, race, R9 was modified to produce 2,350 horsepower at 3,000 r.p.m.) The V-12 drove a two-bladed duralumin Fairey-Reid fixed-pitch airscrew through a 0.605:1 gear reduction unit at the front of the engine. It weighed 1,530 pounds (694 kilograms).

The engine burned an exotic fuel mixture of 11% aviation gasoline and 89% benzol (benzene and toluene). Tetraethyl lead was added to the mixture to limit pre-ignition. The float plane’s fuel supply was carried in the pontoons. Because of the engine’s high rate of consumption and the limited fuel capacity, the S.6 was unable to run at full power during the Schneider race.

Supermarine S.6 N247 was destroyed on takeoff, 18 August 1931. The pilot, Lieutenant Gerald L. Brinton, Royal Navy, assigned to the RAF High-Speed Flight, was killed.

Supermarine S.6 N247 at RAF Calshot 12 August 1929. (Unattributed)
Supermarine S.6 N247 at RAF Calshot 12 August 1929. (Unattributed)

¹ FAI Record File Number 14999

² FAI Record File Number 11830

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

2 September 1953

Colonel J. Stanley Holtoner with his FAI record-setting F-86D Sabre, 51-6168. (FAI)

2 September 1953: Colonel J. Stanley Holtoner, U.S. Air Force, flew a production North American Aviation F-86D-35-NA Sabre, serial number 51-6168, to a Fédération Aéronautique Internationale (FAI) World Speed Record over a 100 kilometer course at Vandalia, Ohio, averaging 1,110.75 kilometers per hour (690.188 miles per hour).¹ Colonel Holtoner was the commanding officer of the Air Force Flight Test Center, Edwards Air Force Base, California. He was awarded the Thompson Trophy.

On the previous day, Captain Harold E. Collins flew another F-86D Sabre, 51-6145, setting an FAI World Speed Record over a 15 kilometer straight course of 1,139.219 kilometers per hour (707.878 miles per hour).²

The F-86D was an all-weather interceptor developed from North American Aviation F-86 Sabre day fighter. It was the first single-seat interceptor, and it used a very sophisticated—for its time—electronic fire control system. It was equipped with search radar and armed with twenty-four unguided 2.75-inch (70 millimeter) Mk 4 Folding-Fin Aerial Rockets (FFAR) rockets carried in a retractable tray in its belly. The rockets could be fired in salvos of 6, 12 or 24. They had a 6 pound (2.7 kilogram) high explosive warhead and used a proximity fuse.

The F-86D was larger than the F-86A, E and F fighters, with a longer and  wider fuselage. It was also considerably heavier. The day fighter’s sliding canopy was replaced with a hinged “clamshell” canopy. A large, streamlined radome was above the reshaped engine intake.

The F-86D Sabre was 40 feet, 3¼ inches (12.275 meters) long with a wingspan of 37 feet, 1½ inches (11.316 meters), and overal height of 15 feet, 0 inches (4.572 meters). The first production variant, F-86D-1-NA, had an empty weight of 13,677 pounds (6,204 kilograms) and gross weight of 16,292 pounds (7,390 kilograms).

The F-86D was equipped with a General Electric J47-GE-17 turbojet engine, rated at 5,425 pounds of thrust, or 7,500 pounds with afterburner. (Aircraft completed after 1954 were equipped with a J47-GE-33.) It had a top speed of 692 miles per hour (1,114 kilometers per hour) at Sea Level (0.909 Mach).

The F-86D had a range of 330 miles (531 kilometers) and a service ceiling of 49,750 feet (15,164 meters). Its rate of climb was 12,150 feet per minute (61.7 meters per second).

Between December 1949 and September 1954, 2,505 F-86D Sabres (sometimes called the “Sabre Dog”) were built by North American Aviation. There were many variants (“block numbers”) and by 1955, almost all the D-models had been returned to maintenance depots or the manufacturer for standardization. 981 of these aircraft were modified to a new F-86L standard. The last F-86D was removed from U.S. Air Force service in 1961.

After its service with the United States Air Force, F-86D 51-6168 was transferred to the Greek Air Force. In 2009, it was photographed, stripped and sitting on its belly, at Agrinion Airport (AGQ), Greece.

North American Aviation F-86D-35-NA Sabre 51-6168, FAI World Speed Record holder. (FAI)
North American Aviation F-86D-35-NA Sabre 51-6168, FAI World Speed Record holder. (FAI)

¹ FAI Record File Number 10428

² FAI Record File Number 8868

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

17 August 1951

Colonel Fred J. Ascani, United States Air Force
Colonel Fred J. Ascani, United States Air Force

17 August 1951: In order to demonstrate the capabilities of the United States Air Force’s new day fighter, Colonel Fred J. Ascani, Vice Commander, Air Force Flight Test Center, Edwards Air Force Base, California, had been assigned to take two new North American Aviation F-86E Sabres from the production line at El Segundo, California, to the National Air Races at Detroit, Michigan. He was to attempt a new world speed record.

Colonel Ascani selected F-86E-10-NA 51-2721 and 51-2724. They received bright orange paint to the forward fuselage and the top of the vertical fin. Bold numbers 2 and 4 were painted on their sides.

North American Aviation F-86E-10-NA Sabre 51-2721. (FAI)
Colonel Fred J. Ascani with the Thompson Trophy, 1951. (AP)

Flying Number 2, F-86E 51-2721, Fred Ascani flew a 100-kilometer closed circuit at an average speed of 1,023.04 kilometers per hour (635.69 miles per hour), and set a new Fédération Aéronautique Internationale (FAI) World Record for Speed Over a Closed Circuit of 100 Kilometers.¹

For his accomplishment, Colonel Ascani was awarded both the Thompson Trophy and the MacKay Trophy.

The North American Aviation F-86 was a single-seat, single-engine day fighter designed by Edgar Schmued and the same team at North American that designed the World War II P-51 Mustang fighter. The Sabre was the first fighter to incorporate swept wings, which improved flight at high subsonic speed by reducing aerodynamic drag and delaying the onset of compressibility effects. The leading edges of the wings and tail surfaces were swept 35° based on captured German technical data and extensive wind tunnel testing.

North American Aviation F-86E-10-NA Sabre 51-2721. (U.S. Air Force)
North American Aviation F-86E-10-NA Sabre 51-2721. (U.S. Air Force)

The F-86E Sabre was an improved F-86A. The most significant change was the incorporation of an “all flying tailplane” in which the entire horizontal tail moved to control the airplane’s pitch. The tailplane pivoted around its rear spar, allowing the leading edge to move up or down 8°. The elevators were mechanically linked to the tailplane and their movement was proportional to the tailplane’s movement. Control was hydraulic, and this provided improved handling at high speeds where compressibility could “freeze” control surfaces. There were systems improvements as well, with “artificial feel” to the hydraulic controls to improve feedback to the pilot and prevent over-controlling. Beginning with Block 10 aircraft, the “V”-shaped windscreen of the earlier models was replaced with an optically flat laminated glass windshield.

Fred Ascani in the cockpit of F-86E
Fred Ascani in the cockpit of North American Aviation F-86E-10-NA Sabre 51-2724. (U.S. Air Force)

The F-86E was 37 feet, 6.5 inches (11.443 meters) long with a wingspan of 37 feet, 1.4 inches (11.313 meters) and overall height of 14 feet, 1 inch (4.293 meters). Its empty weight was 10,555 pounds (4,787.7 kilograms) and the maximum takeoff weight was 16,436 pounds (7,455.2 kilograms).

The F-86E was powered by a General Electric J47-GE-13 turbojet engine. The J47 was an axial-flow turbojet with a 12-stage compressor and single stage turbine. The J47-GE-13 was rated at 5,200 pounds of thrust and 6,000 pounds (“wet”). The engine was 12 feet, 0.0 inches (3.658 meters) long, 3 feet, 3.0 inches (0.991 meters) in diameter and weighed 2,525 pounds ( kilograms).

The F-86E Sabre had a maximum speed of 679 miles per hour (1,092.7 kilometers per hour) at Sea Level and 601 miles per hour (967.2 kilometers per hour) at 35,000 feet (10,668 meters). Its service ceiling was 47,200 feet (14,386.7 meters).

The F-86E carried 437 gallons (1,654.2 liters) of fuel internally and could carry two 200-gallon (757.1 liter) drop tanks under the wings. Maximum range was 1,022 miles (1,645 kilometers).

The F-86A, E and F Sabres were armed with six Browning AN-M3 .50-caliber aircraft machine guns with 1,602 rounds of ammunition.

6,233 F-86 Sabres were built by North American at Inglewood, California and Columbus Ohio. Another 521 were assembled by Fiat and Mitsubishi. 1,815 CL-13 Sabres were built by Canadair, and 115 CA-26 and CA-27 Sabres by Commonwealth Aircraft Corporation in Australia. Total production for all types and manufacturers was 8,684. North American Aviation built 336 F-86Es and 60 more were built by Canadair (F-86E-6-CAN).

In order to emphasize that Colonel Ascani’s record-setting Sabre was a standard production airplane, it was immediately sent into combat with the 25th Fighter Interceptor Squadron, 51st Fighter Interceptor Wing, at Suwon Air Base, Korea. There, it was christened THIS’LL KILL YA. On 3 May 1953, 51-2721 was damaged during a landing accident at Kimpo Air Base, but it was repaired and returned to service.

The FAI World Speed Record holder, North American Aviation F-86E-10-NA Sabre 51-2721, at Suwon Air Base, Korea, circa 1952.
A group of Allied pilots stand with the FAI World Speed Record holder, North American Aviation F-86E-10-NA Sabre 51-2721, at Suwon Air Base, Korea, circa 1952. Its pilot, Lieutenant Jack L. Price, has named it THIS’LL KILL YA.

¹ FAI Record File Number 10429

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather