8 April 1945

In one of the most dramatic photographic images of World War II, “Wee Willie,” Boeing B-17G-15-BO Flying Fortress 42-31333, is going down after it was hit by antiaircraft artillery over Stendal, Saxony-Anhalt, Germany, 8 April 1945. (American Air Museum in Britain, Roger Freeman Collection.)

8 April 1945: Wee Willie, a Flying Fortress heavy bomber, left its base at Air Force Station 121 (RAF Bassingbourne, Cambridgeshire, England), on its 129th combat mission over western Europe. The aircraft commander was 1st Lieutenant Robert E. Fuller, U.S. Army Air Forces.

Wee Willie was a B-17G-15-BO, serial number 42-31333, built by the Boeing Airplane Company’s Plant 2, Seattle, Washington. It was delivered to the United States Army Air Forces at Cheyenne, Wyoming on 22 October 1943, and arrived at Bassingbourne 20 December 1943. It was assigned to the 322nd Bombardment Squadron (Heavy), 91st Bombardment Group (Heavy), 1st Air Division, 8th Air Force. The identification letters LG W were painted on both sides of its fuselage, and a white triangle with a black letter A on the top of its right wing and both sides of its vertical fin.

Boeing B-17G-15-BO Flying Fortress 42-31333, Wee Willie, December 1944. (U.S. Air Force)
Boeing B-17G-15-BO Flying Fortress 42-31333, LG W, Wee Willie, December 1944. (U.S. Air Force)

On 8 April 1945, the 322nd Bombardment Squadron was part of an attack against the locomotive repair facilities at the railroad marshaling yards in Stendal, Saxony-Anhalt Germany. The squadron was bombing through clouds using H2S ground search radar to identify the target area. Antiaircraft gunfire (flak) was moderate, causing major damage to four B-17s and minor damage to thirteen others. Two bombers from the 91st Bomb Group were lost, including Wee Willie.

The Missing Air Crew Report, MACR 13881, included a statement  from a witness:

We were flying over the target at 20,500 feet [6,248 meters] altitude when I observed aircraft B-17G, 42-31333 to receive a direct flak hit approximately between the bomb bay and #2 engine. The aircraft immediately started into a vertical dive. The fuselage was on fire and when it had dropped approximately 5,000 feet [1,524 meters] the left wing fell off. It continued down and when the fuselage was about 3,000 feet [914.4 meters] from the ground it exploded and then exploded again when it hit the ground. I saw no crew member leave the aircraft or parachutes open.

This photographic image precedes the one above. The Boeing B-17G-15-BO Flying Fortress 42-31333, Wee Willie, is engulfed in flame. The left wing has separated and is crossing over the fuselage. (American Air Museum in Britain)

The pilot, Lieutenant Fuller, did escape from the doomed bomber. He was captured and spent the remainder of the war as a Prisoner of War. The other eight crew members, however were killed.

1st Lieutenant Robert E. Fuller, O-774609, California. Aircraft Commander/Pilot—Prisoner of War

2nd Lieutenant Woodrow A. Lien, O-778858, Montana. Co-pilot—Killed in Action

Technical Sergeant Francis J. McCarthy, 14148856, Tennessee. Navigator—Killed in Action

Staff Sergeant Richard D. Proudfit, 14166848, Mississippi. Togglier—Killed in Action

Staff Sergeant Wylie McNatt, Jr., 38365470, Texas. Flight Engineer/Top Turret Gunner—Killed in Action

Staff Sergeant William H. Cassiday, 32346219, New York. Ball Turret Gunner—Killed in Action

Staff Sergeant Ralph J. Leffelman, 19112019, Washington. Radio Operator/Top Gunner—Killed in Action

Staff Sergeant James D. Houtchens, 37483248, Nebraska. Waist Gunner—Killed in Action

Sergeant Le Moyne Miller, 33920597, Pennsylvania. Tail Gunner—Killed in Action

In the third photograph of the sequence, Wee Willie has exploded and fragments of the wings and fuselage streak downward in flame. (American Air Museum in Britain, Roger Freeman Collection)

Wee Willie was the oldest B-17G still in service with the 91st Bomb Group, and the next to last B-17 lost to enemy action by the group before cessation of hostilities. The War in Europe came to an end with the unconditional surrender of Germany just 30 days later, 7 May 1945.

Boeing B-17G-15-BO Flying Fortress, LG W, “Wee Willie,” and its flight crew at Air Force Station 121, RAF Bassingbourne, 12 February 1944. The bomber is still nearly new, having flown 6 combat missions, 31 January 1943–3 February 1944, when it was damaged by anti-aircraft artllery over Wilhelmsahaven, Germany. “Wee Willie” was out of action until 20 February 1944. Standing, left to right: 1st Lt. John A. Moeller, co-pilot; 2nd Lt. Harry Lerner, navigator; S/Sgt Robert Kelley, waist gunner; S/Sgt Martin, ball turret gunner; Lt. Joe Gagliano, bombardier; 1st Lt. Paul D. Jessop, pilot. Kneeling, left to right: S/Sgt MacElroy, waist gunner; S/Sgt Shoupe, radio operator; S/Sgt Southworth, engineer/top turret gunner; and S/Sgt Joe Zastinich, tail gunner. Waist gunner S/Sgt Henry F. Osowski was wounded on the Wilhelmshaven mission and is not in this photograph. (American Air Museum in Britain)
During the 129 missions “Wee Willie” flew in its 1 year, 3 months, 20 days at war, many airmen served as its crew members. The men in this photograph are not identified, and the date it was taken is not known. A battle-scarred veteran, “Wee Willie” now has markings showing 106 missions completed. These men are representative all the aircrews who fought and died in the skies over Europe. The officer kneeling in the front row, right, has been identified as 2nd Lieutenant Jess Ziccarello, the navigator for this crew. Lieutenant Colonel Ziccarello passed away 2 October 2019 at the age of 96 years. Thanks to his son, Rick Ziccarello, for the identification. In the back row, second from right, is waist gunner Samuel McGowen. According to his nephew, Hal McGowen, he completed his 30 mission combat tour and lived until 2007. (American Air Museum in Britain)

© 2019, Bryan R. Swopes

8 April 1931

Amelia Earhart with Pitcairn Autogiro Co. PCA-2 #4, X760W, at Pitcairn Field, Warrington, Pennsylvania, 8 April 1931. (Purdue University)
Amelia Earhart with Pitcairn Autogiro Co. PCA-2 #4, NX760W, at Pitcairn Field, Warrington, Pennsylvania, 8 April 1931. (Purdue University)

8 April 1931: Amelia Earhart, flying a Pitcairn PCA-2 autogyro, reached an altitude of 18,415 feet (5,613 meters) ¹ over Warrington, Pennsylvania. The duration of the flight, her second of the day, was 1 hour, 49 minutes. She landed at 6:04 p.m.

A sealed barograph was carried aboard to record the altitude for an official record. Following the flight, the barograph was sent to the National Aeronautic Association headquarters in Washington, D.C., for certification.

08 Apr 1931, Pennsylvania, USA --- Original caption: Miss Amelia Earhart in two altitude tests with an autogiro plane, at the Pitcairn Airfield, Willow Grove, Pa., soars to height of 18,500 feet in the first, and surpasses that mark by 500 feet in the second. If her barographs correspond with those marks, she in all probability will have established a world record for men as well as women. She is the only woman who ever piloted one of the "windmill" types of craft. Photo shows Amelia Earhart handing Major Luke Christopher, her barograph after her first flight. --- Image by © Bettmann/CORBIS
Amelia Earhart, in the cockpit of a Pitcairn PCA-2 autogyro, handing a barograph to Major Luke Christopher, National Aeronautic Association. (© Bettmann/CORBIS)

An autogyro is a rotary wing aircraft that derives lift from a turning rotor system which is driven by air flow (autorotation). Unlike a helicopter, thrust is provided by an engine-driven propeller. The engine does not drive the rotor.

The Pitcairn Autogyro Company’s PCA-2 was the first autogyro certified in the United States. Operated by a single pilot, it could carry two passengers. The fuselage was constructed of welded steel tubing, covered with doped fabric and aluminum sheet.

Amelia Earhart with the Pitcairn PCA-2 aurtogyro, NX760W.
Amelia Earhart with a Pitcairn PCA-2 autogyro.

The PCA-2 was 23 feet, 1 inch (7.036 meters) long, excluding the rotor. The low-mounted wing had a span of 30 feet, 0 inches (9.144 meters), and the horizontal stabilizer and elevators had a span of 11 feet, 0 inches. (3.353 meters). The overall height of the autogyro was 13 feet, 7 inches (4.140 meters). The PCA-2 had an empty weight of 2,233 pounds (1,013 kilograms) and gross weight of 3,000 pounds (1,361 kilograms).

The four-bladed rotor was semi-articulated with horizontal and vertical hinges to allow for blade flapping and the lead-lag effects of Coriolis force. Unlike the main rotor of a helicopter, there was no cyclic- or collective-pitch motion. The rotor system was mounted at the top of a pylon and rotated counter-clockwise, as seen from above. (The advancing blade is on the right.) The rotor had a diameter of 45 feet, 0 inches (13.716 meters). The blades were approximately 22 feet (6.7 meters) long, with a maximum chord of 1 foot, 10 inches (0.559 meters). Each blade was constructed with a tubular steel spar with mahogany/birch plywood ribs, a formed plywood leading edge and a stainless steel sheet trailing edge. They were covered with a layer of very thin plywood. A steel cable joined the blades to limit their lead-lag travel.

The aircraft was powered by an air-cooled, supercharged, 971.930-cubic-inch-displacement (15.927 liter) Wright R-975E Whirlwind 330 nine-cylinder radial engine with a compression ratio of 5.1:1. The R-975E produced a maximum 330 horsepower at 2,000 r.p.m. at Sea Level, burning 73-octane gasoline. The engine turned a two-bladed Hamilton Standard variable-pitch propeller through direct drive. The engine weighed 635 pounds (288 kilograms).

The PCA-2 had two fuel tanks with a total capacity of 52 gallons (197 liters). It also had a 6½ gallon (24.6 liter) oil tank to supply the radial engine.

The PCA-2 had a maximum speed of 120 miles per hour (193 kilometers per hour). It had a service ceiling of 15,000 feet (4,572 meters) and a range of 290 miles (467 kilometers).

Pitcairn Autogyro Co. PCA-2 NX760W at East Boston Airport, October 1930. (Courtesy of the Boston Public Library, Leslie Jones Collection.)
Pitcairn Autogyro Co. PCA-2 NX760W at East Boston Airport, October 1930. (Courtesy of the Boston Public Library, Leslie Jones Collection.)

¹ Most sources state that Earhart set a “world altitude record” on this flight. TDiA checked with the National Aeronautic Association, which certifies aviation records in the United States. NAA has no such record in its files. Fédération Aéronautique Internationale (FAI) records show that Earhart set three world speed records in 1930, and a world distance record in 1932. She is not credited with an altitude record, or any flight record in an autogyro.

© 2019, Bryan R. Swopes

7 April 1967

SA 340 F-WOFH (Airbus Helicopters)
Jean Boulet hovers the prototype Sud-Aviation SA 340 Gazelle, 340.001, F-WOFH, at Marignane, France, 7 April 1967. (Airbus Helicopters)

7 April 1967: The prototype Sud-Aviation SA 340 Gazelle, c/n 340.001, F-WOFH, made its first flight at Marseille–Marignane Airport with test pilot Jean Boulet. The SA 340 was a five-place, light turboshaft-powered helicopter, flown by a single pilot. It was intended as a replacement for the SA 313B/318C Alouette II and SA 316/319 Alouette III.

The prototype used the engine, drive train, tail rotor and landing skids of an Alouette II, and a new three-bladed, composite, semi-rigid main rotor, based on the four-bladed rigid rotor of the Messerschmitt-Bölkow-Blohm (MBB) Bo-105.

Sud-Aviation test pilot Jean Boulet in the cockpit of the SA 349, an experimental variant of the SA 340 Gazelle.
Sud-Aviation test pilot Jean Boulet in the cockpit of the SA 349, an experimental modification of the prototype SA 340 Gazelle, 340.001. (Airbus Helicopters)

Société nationale des constructions aéronautiques du sud-ouest (Sud-Aviation) was a French government-owned aircraft manufacturer, resulting from the merger of Société nationale des constructions aéronautiques du sud-est (SNCASE) and Société nationale des constructions aéronautiques du sud-ouest (SNCASO) in 1957. In 1970, following another merger, the company would become Société nationale industrielle aérospatiale, or SNIAS, better known as Aérospatiale. This company combined several other manufacturers such as Matra and Messerschmitt-Bölkow-Blohm to become Eurocopter, then EADS. It is now Airbus Helicopters.

The SA 340 was powered by a Turboméca Astazou IIN turboshaft which turns 42,500 r.p.m. (± 200 r.p.m.). The output shaft speed is reduced through a 7.34728:1 gear reduction.  The engine rated at 353 kW (473 shaft horsepower) continuous, or 390 kW (523 shaft horsepower) for takeoff. It is temperature-limited to 500 °C. for continuous operation, or 525 °C. for takeoff.

The main rotor assembly, mast, transmission and Turbomeca Astazou engine of the prototype SA 340 Gazelle. (Airbus Helicopters)
The main rotor assembly, mast, swash plate and pitch control links, transmission, main driveshaft and Turboméca Astazou turboshaft engine of the prototype Sud-Aviation SA 340 Gazelle, F-WOFH. (Airbus Helicopters)

F-WOFH was used to test the new fenestron anti-torque system. The conventional tail rotor was replaced with a smaller 13-bladed ducted fan contained within a large vertical fin. The fenestron had several advantages: It was safer, as it was protected from ground strikes or from ground personnel walking into it. It was more effective in producing thrust for anti-torque, though it required more engine power at a hover. It reduced the aerodynamic drag of the helicopter in forward flight, and was not subject to large displacements resulting from dissymmetry of lift. The large fin was cambered and relieved the anti-torque system during forward flight. This meant that the  helicopter could be flown following an anti-torque failure, rather than requiring an immediate emergency autorotation.

Sud-Aviation fenestron on an early production SA 341 Gazelle, c/n 1006, F-WTNV
Sud-Aviation fenestron on an early production SA 341 Gazelle, c/n 1006, F-WTNV. (Airbus Helicopters)

The Aérospatiale SA 341 Gazelle entered production in 1971, as both a military and civil helicopter. The aircraft was also produced in England by Westland.

The Gazelle the first helicopter to be certified for instrument flight with a single pilot.

The SA 341 had an overall length, with rotors turning, of 11.972 meters (39 feet, 3.34 inches). The fuselage was 9.533 meters (31 feet, 3.31 inches) long and the top of its fin was 3.192 meters (10 feet, 5.67 inches) high. The three-bladed main rotor was 10,500 meters (34 feet, 5.39 inches) in diameter, and turned clockwise as seen from above. (The advancing blade is on the left.) The rotor has a normal operating speed of  378 r.p.m., ± 12 r.p.m. (310–430 r.p.m. in autorotation. The 13-blade fenestron is enclosed in a duct in the vertical fin. The rotor has a diameter of 0.695 meters (2 feet, 3. 36 inches) and turns counter-clockwise as seen from the left. (The advancing blades are above the axis of rotation.)

The helicopter’s certified maximum gross weight is 1,800 kilograms, or 3,970 pounds.

Aérospatiale SA 341 Gazelle three-view illustration with dimensions. (Aérospatiale)

The Gazelle is powered by a Turboméca Astazou III.

Teh SA 341 has a maximum speed (Vne ) of 310 kilometers per hour (168 knots ) at Sea Level, making it the fastest light helicopter produced at the time. The helicopter is limited to a pressure altitude of 20,000 feet (6,096 meters). It can operate in temperatures from -50  to +45 °C. (-58 to 113 °F.)

Approximately 1,775 Gazelles were built between 1967 and 1996, when production ended.

Sud-Aviation SA 340.001, F-WOFH. (Airbus Helicopters)
Sud-Aviation SA 340.001, F-WOFH. (Airbus Helicopters)

© 2019, Bryan R. Swopes

6–7 April 1966

Test pilot Bob Ferry in teh cockpit of YOH-61 62-4213, with engineer Dick Lofland, before the non-stop coast-to-coast flight. (Hughes Aircraft)
Test pilot Bob Ferry in the cockpit of Hughes YOH-6A 62-4213, with engineer Dick Lofland, before the non-stop coast-to-coast flight. (Hughes Aircraft)

6–7 April 1966: Chief Test Pilot Robert G. Ferry of Hughes Tool Company’s Aircraft Division flies the number three prototype YOH-6A, 62-4213, from the company airport at Culver City, California, non-stop to Ormond Beach, Florida, a distance of 3,561.55 kilometers (2,213.04 miles). Bob Ferry set three Fédération Aéronautique Internationale (FAI) World Records for Distance Without Landing.¹ All three records still stand.

Hughes YOH-6A 62-4213 at Edwards Air Force Base, 1966. (FAI)
Hughes YOH-6A 62-4213 at Edwards Air Force Base, 1966. (FAI)

Bob Ferry took off at the Hughes Airport at Culver City (just north of LAX) at 2:20 p.m., Pacific Time. The aircraft twas so heavily loaded with fuel that the test pilot exceeded the engine’s torque limit by 21% just to get airborne. When he established a climb he reduced the power to “red line.” During the entire flight he kept the engine at 105% N2 (a 2% overspeed). He landed after 15 hours, 8 minutes of flight.

On 26 March 1966, Allison Engine Company test pilot Jack Schweibold flew the same YOH-6A  to set three Fédération Aéronautique Internationale (FAI) World Records for Distance Over a Closed Circuit Without Landing of 2,800.20 kilometers (1,739.96 miles).² One week earlier, 20 March, Jack Zimmerman had set a Fédération Aéronautique Internationale (FAI) World Record for Distance Over a Closed Circuit Without Landing of 1,700.12 kilometers (1,056.41 miles).³ Fifty-one years later, these four World Records also still stand.

Robert George Ferry was born 29 November 1923 in Hennepin County, Minnesota, the second child of Lucius M. and Charlotte E. Ferry. He developed an interest in aviation during his teen years. Ferry earned a bachelor’s degree from Florida Southern University. He entered the U.S. Army Air Corps in 1943 and graduated from flight training at Luke Filed, Arizona, in 1945.

Ferry trained as a helicopter pilot at San Marcos Army Air Field, Texas, flying Sikorsky R-5 and R-6 helicopters. After graduation Lieutenant Ferry was assigned to Panama.

In 1947, Robert Ferry married Miss Marti Holt of Austin, Texas. They remained together for 62 years.

Bob Ferry flew 90 combat missions in helicopters during the Korean War. In 1954, he was accepted to the U.S. Air Force Experimental Test Pilot School, Class 54C, at Edwards Air Force Base. (One of Ferry’s classmates was future X-15 pilot, Robert M. White.)

Assigned as a test pilot Bob Ferry flew the McDonnell XV-1 Convertiplane compound helicopter with pressure jet rotor drive and the Bell XV-3, an experimental “tiltrotor.” On 6 January 1959, he completed the conversion from helicopter to airplane mode. He also flew the Hughes XV-9A, an experimental high-speed helicopter, which also used tip jets to drive the rotor. After six years as a test pilot at Edwards, Ferry was assigned to duties in Germany. He retired from the Air Force in 1964 with the rank of Lieutenant Colonel.

Robert G. Ferry, Chieft Test Pilot, Hughes helicopters.
Robert G. Ferry, Chief Test Pilot, Hughes Helicopters. (San Diego Union-Tribune)

In 1966, Robert Ferry became chief test pilot at the Hughes Tool Company Aircraft Division at Culver City, California. He tested the OH-6A light observation helicopter and the AH-64 Apache at the Hughes facility at Palomar Airport in north San Diego County. During this time Ferry earned a Masters Degree in Business Administration from the University of San Diego.

Bob Ferry retired from Hughes Helicopters after 18 years. He had flown approximately 10,800 hours in 125 different aircraft. About 8,000 hours were in helicopters. He had been awarded the Iven C. Kincheloe Award for 1959 by the Society of Experimental Test Pilots, the Igor I. Sikorsky International Trophy for his transcontinental record flight, and the 1967 Frederick L. Feinberg Award by the American Helicopter Society.

Lieutenant Colonel Robert G. Ferry, United States Air Force (Retired) died at his home in San Marcos, California, 15 January 2009 at the age of 85 years.

Hughes YOH-6A 62-4211 in its configuration during the three-way LOH competitive testing. (U.S. Army)
Hughes YOH-6A 62-4211, the first prototype, in its configuration during the three-way LOH competitive testing. (U.S. Army)

The Hughes Model 369 was built in response to a U.S. Army requirement for a Light Observation Helicopter (“L.O.H.”). It was designated YOH-6A, and the first aircraft received U.S. Army serial number 62-4211. It competed with prototypes from Bell Helicopter Company (YOH-4) and Fairchild-Hiller (YOH-5). All three aircraft were powered by a lightweight Allison Engine Company turboshaft engine. The YOH-6A won the three-way competition and was ordered into production as the OH-6A Cayuse. It was nicknamed “loach,” an acronym for L.O.H.

The YOH-6A was a two-place light helicopter, flown by a single pilot. It had a four-bladed, articulated main rotor which turned counter-clockwise, as seen from above. (The advancing blade is on the helicopter’s right.) Stacks of thin stainless steel “straps” fastened the rotor blades to the hub and were flexible enough to allow for flapping and feathering. Hydraulic dampers controlled lead-lag. Originally, there were blade cuffs around the main rotor blade roots in an attempt to reduce aerodynamic drag, but these were soon discarded. A two-bladed semi-rigid tail rotor was mounted on the left side of the tail boom. Seen from the left, the tail-rotor rotates counter-clockwise. (The advancing blade is above the axis of rotation.)

Overhead photograph of a Hughes YOH-6. Note the blade cuffs. (U.S. Army)
Overhead photograph of a Hughes YOH-6A. Note the blade cuffs. (U.S. Army)

The YOH-6A was powered by a T63-A-5 turboshaft engine (Allison Model 250-C10) mounted behind the cabin at a 45° angle. The engine was rated at 212 shaft horsepower at 52,142 r.p.m. (102% N1) and 693 °C. turbine outlet temperature for maximum continuous power, and 250 shaft horsepower at 738 °C., 5-minute limit, for takeoff. Production OH-6A helicopters used the slightly more powerful T63-A-5A (250-C10A) engine.

The Hughes Tool Company Aircraft Division built 1,420 OH-6A Cayuse helicopters for the U.S. Army. The helicopter remains in production as AH-6C and MH-6 military helicopters, and the MD500E and MD530F civil aircraft.

Hughes YOH-6A 62-4213 is in the collection of the United States Army Aviation Museum, Fort Rucker, Alabama.

¹ FAI Record File Numbers 784, 785 and 11655.

² FAI Record File Numbers 786, 787 and 11656.

³ FAI Record File Number 762.

© 2019, Bryan R. Swopes

7 April 1961

Boeing B-52B-30-BO Stratofortress 53-380. (U.S. Air Force)
Boeing B-52B-30-BO Stratofortress 53-380. (U.S. Air Force)

7 April 1961: Boeing B-52B-30-BO Stratofortress 53-380, assigned to the 95th Bombardment Wing and named Ciudad Juarez, departed Biggs Air Force Base, El Paso, Texas on a training mission. The aircraft commander was Captain Donald C. Blodgett.

The flight took Ciudad Juarez over New Mexico where they were intercepted by a flight of two North American F-100A Super Sabres of the New Mexico Air National Guard, also on a training flight.

A North American Aviation F-100A-1-NA Super Sabre, 52-5756, assigned to the New Mexico Air National Guard. (U.S. Air Force)

Captain Dale Dodd and 1st Lieutenant James W. van Scyoc had departed Kirtland Air Force Base, Albuquerque, New Mexico. Each of their Super Sabres were armed with two GAR-8 Sidewinder air-to-air missiles (later redesignated AIM-9B Sidewinder). Their assignment was to practice ground-controlled intercepts of the B-52.

Each F-100 made five passes at the B-52, flying at 34,000 feet (10,363 meters) over central New Mexico. Their Sidewinder infrared-seeking sensors would lock on to the heat of the B-52’s engines and give an audible signal to the fighter pilot that the target had been acquired. Safety precautions required that a circuit breaker be pulled and a firing switch be left in the off position. Before each pass, ground controllers had the pilots verify that the missiles were safed.

Flight of four North American F-100A Super Sabres of the 188th FIS, NMANG. (New Mexico Air National Guard)
Flight of four North American F-100A Super Sabres of the 188th FIS, NMANG. (New Mexico Air National Guard)

As the training session came to an end, Lieutenant van Scyoc, flying F-100A-20-NA Super Sabre 53-1662, announced, “OK, Wing, one more run then we’ll go home.” The seeker heads of his Sidewinders locked on to the B-52, but then one of the missiles fired.

Van Scyoc radioed, “Look out! One of my missiles is loose!” Captain Blodgett heard the warning, but before he could begin evasive maneuvering, the Sidewinder impacted the inboard engine nacelle under the bomber’s left wing, blowing the wing completely off. The B-52 immediately rolled over and went into a spin. 52-380 disappeared into the clouds 10,000 feet (3,048 meters) below.

The co-pilot of Ciudad Juarez, Captain Ray C. Obel, immediately ejected. His ejection seat was thrown through a hatch opening in the cockpit ceiling. Because of the high altitude, this sudden opening in the fuselage resulted in explosive decompression. The crew chief, Staff Sergeant Manuel A. Mieras, had been standing on a crew ladder behind the pilots which led to the lower deck where the navigator and bombardier were located. Sergeant Mieras was sucked up through the hatch. His left leg was so badly injured that it later had to amputated.

When 53-380 was assigned to the 95th Bombardment Wing, it was named Ciudad Juarez. (Unattributed)
When 53-380 was assigned to the 95th Bombardment Wing, it was named Ciudad Juarez. (Unattributed)

Captain Blodgett was pinned against the cockpit side by the g forces of the rapidly spinning bomber. He later reported:

I heard van Scyoc call “Look out! My missile’s fired.” We were on autopilot and I grabbed the controls just as the missile hit. There was a tremendous shudder and the aircraft banked left steeply. Electrical equipment in the right side of the cockpit caught fire. My copilot ejected with the aircraft in a 90° bank and in all the confusion I didn’t realize he had gone. I tried to reach the alarm bell control between the two seats to order the crew to bail out, while holding the controls with my left hand to maintain full right aileron and rudder. I didn’t realize the wing had gone and the aircraft wasn’t responding at all; it began to spin down into the clouds and I still wasn’t sure that I had hit the alarm. Later, my crew chief said he had seen the red light flashing as he sat on the steps to the lower cabin. With g-forces building up tremendously, pinning me to my seat I could not raise my right hand from its position near the bail-out alarm but could move it sideways to the ejection handle. The hatch fired and the seat threw me up fifty feet with the B-52 at 600 knots. The slipstream tore off my helmet as I left the aircraft. There was another explosion and I went through a ball of fire — it felt like being in an oven. Immediately after that I went through a “bath” of JP-4 fuel as the fuel tanks had broken up in this second explosion. At least this put out the fire but now I was soaking wet with fuel and still on the ejection seat. Assuming a seat malfunction (they told me afterwards I was holding on to it) I reached out to unfasten the lap belt when suddenly I flew out of the seat. However, the inter-phone cord wrapped around my leg so now I was going down through the clouds with a 650 pound seat hooked to my leg. I thought it would rip my leg off and I managed to claw the cord free. By now I was falling in a cloud of debris — and a blizzard. I released my survival gear pack, which also automatically released the survival raft. This was suspended about 40 feet below me and, with all the updrafts in the clouds due to the bad weather it acted like a sail, pulling me round in a 180° arc. I thought, ‘If I hit the ground sideways, this is it!’ I couldn’t get to my knife to cut it free but I soon got out of the turbulence and began to fall straight. 

When I ejected, my left arm hit the hatch putting a big gash in it. The blood was pouring out of this and I was holding this with my right hand, trying to stop the bleeding. Suddenly I saw something white and I hit the ground in a downswing of the parachute and a 30 knot wind. It felt like jumping off a two-story building. I hit so hard that everything in my survival kit: the radio, mirrors, etc., was broken apart from the survival rifle. My original intentions were to get the radio going and tell that fighter pilot what I thought of him. . . .

Aviation Safety Network, https://aviation-safety.net/wikibase/wiki.php?id=48341

Ciudad Juarez impacted on Mount Taylor, an 11,305 foot (3,446 meter) stratovolcano northeast of Grants, New Mexico, and left a crater 75 feet (23 meters) deep. Captain Peter J. Gineris, navigator, Captain Stephen C. Carter, bombardier, and 1st Lieutenant Glenn V. Blair, electronic countermeasures, did not escape.

Captain Blodgett suffered a fractured pelvis, Captain Obel, a broken back. The tail gunner, Staff Sergeant Ray A. Singleton, was badly burned.

Sergeant Singleton located Captain Blodgett and they were both rescued by helicopter later that day. It would be two days before Captain Obel and Sergeant Mieras were located.

An investigation determined that moisture condensation inside a worn electrical plug had caused a short circuit which fired the Sidewinder. Lieutenant van Scyoc was completely exonerated of any blame for the accident.

AIM-9B Sidewinder infrared-seeking air-to-air missile. (Petey21)
AIM-9B Sidewinder infrared-seeking air-to-air missile. (Petey21)

The AIM-9B Sidewinder was the first production version of the Raytheon Sidewinder 1A. It was 9 feet, 3.5 inches (2.832 meters) long with a diameter of 5 inches (12.7 centimeters). The span of the fins was 1 foot, 10 inches (55.9 centimeters). The AIM-9B weighed 155 pounds (70.3 kilograms). The missile was powered by a Thiokol Mk. 17 rocket engine which produced 4,000 pounds of thrust for 2.2 seconds. It could achieve a speed of Mach 1.7 over its launch speed, or about Mach 2.5. The maximum range was 2.9 miles (4.82 kilometers). It carried a 10 pound (4.54 kilogram) blast fragmentation warhead with an infrared detonator. The lethal range was approximately 30 feet (9.1 meters).

The Sidewinder is named after a species of rattlesnake, Crotalus cerastes, a pit viper common in the southwest United States and northern Mexico. The snake uses a heat-sensing organ on top of its head to hunt.

Mount Taylor, near Grants, New Mexico. 11,305 feet (3,664 meters).
Mount Taylor, near Grants, New Mexico. 11,305 feet (3,664 meters).

© 2016, Bryan R. Swopes