Tag Archives: First Flight

14 October 1964

Prototype Sikorsky YCH-53A Sea Stallion, Bu. No. 151613, 14 october 1964. (Sikorsky Archives)
Prototype Sikorsky YCH-53A Sea Stallion, Bu. No. 151613, 14 October 1964. (Sikorsky Archives)

14 October 1964: The first prototype Sikorsky YCH-53A Sea Stallion, Bu. No. 151613, made its first flight at the Sikorsky plant at Stratford, Connecticut. (Sikorsky Model S-65, serial number 65001.)

The Bridgeport Telegram reported:

Brief First Flight Made By CH-53A at Sikorsky

     The Sikorsky-Marine Corps CH-53A, designed as the free world’s largest and fastest transport helicopter, took off for the first time Wednesday at the Sikorsky Aircraft plant here. The aircraft was hovered within the flight field in its preliminary phase of the test program.

     The brief flight exceeded expectations and project engineers and pilots expressed satisfaction with the CH-53A’s overall performance. More than twice the forces expected in actual high-performance flight were induced during ground tests prior to flight with far better results than ever before experienced at this early stage of a test program. Tie-down tests, started during the summer to check for components, structure and systems function, also provided “very satisfactory” results.

     The CH-53A will be capable of speed of more than 200 miles an hour and will carry payloads of up to nine tons. It is powered by two General Electric T-64-6 turboshaft engines of 2,850 horsepower each. It will be flown by a three-man crew and will carry 38 fully-equipped troops. For medical evacuation duties, the CH-53A will carry 24 patients.

The Bridgeport Telegram, Vol. LXXIII, No, 250, Saturday, 17 October 1964, Page 3, Columns 6–7

The fuselage of the YCH-53A was similar in configuration to the smaller CH-3C (S-61R). It used the dynamic components from the CH-37 Mojave (S-56) and CH-54A Tarhe (S-64).

U.S. Marine Corps Sikorsky CH-53A Sea Stallion (Wikimedia)

The Sikorsky CH-53A Sea Stallion is a twin-engine heavy-lift transport helicopter operated by two pilots. It is 88 feet, 2.4 inches (26.883 meters) with rotors turning. The fuselage is 67 feet, 2.4 inches (20.483 meters) long  and 8 feet, 10 inches (2.692 meters) wide. The six-blade fully articulated main rotor is 72 feet, 2.7 inches (22.014 meters) in diameter and turns counterclockwise as seen from above. (The advancing blade is on the helicopter’s right.) Main rotor speed is 185 r.pm. The four-blade semi-articulated tail rotor has a diameter of 16 feet (4.877 meters) and is placed on the left side of the tail rotor pylon in a pusher configuration. It turns clockwise as seen from the helicopters left. (The advancing blade is below the axis of rotation.) Overall height (rotors turning) of the Sea Stallion is 24 feet, 10.8 inches (7.599 meters). The tail rotor speed is 792 r.p.m.

The CH-53A is powered by two General Electric T64-GE-6 turboshaft engines rated at 2,850 shaft horsepower, each. Performance of the CH-53D (T64-GE-413, 3,925 s.h.p) has a maximum speed (Vne) of 130 knots (241 kilometers per hour) service ceiling of 16,750 feet (5,105 meters) and range with maximum payload of 540 miles (870 kilometers)

Two YCH-53A prototypes were built, followed by 139 CH-53A Sea Stallion production models.

The CH-53 was developed into the three-engine CH-53E Super Stallion. The current production variant is the CH-53K King Stallion.

Sikorsky HH-53B 66-14428, Super Jolly Green Giant, first flight at Stratford, Connecticut, 15 March 1967. (Sikorsky Historical Archives)
Sikorsky CH-53E Super Stallion at Mojave, California, 9 September 2007. (Alan Redecki/Wikipedia)
This photograph by Alan Radecki of a Sikorsky CH-53E Super Stallion taking off at Mojave, California, 20 September 2007, is too exciting not to include. (Akradecki/Wikipedia)
Sikorsky CH-53K King Stallion at West Palm Beach, Florida, 2 March 2017. (Lance Corporal Molly Hampton, United States Marine Corps)

© 2017 Bryan R. Swopes

14 October 1938

The Curtiss-Wright XP-40 prototype, 38-10, on its first flight, 14 October 1938. Test pilot Ed Elliot is in the cockpit. (San Diego Air and Space Museum Archives) 16_008532

14 October 1938: At Buffalo, New York, test pilot Everett Edward Elliot made the first flight in the new Curtiss-Wright Corporation’s Model 75P, a prototype for a single-engine pursuit plane which had been designated XP-40 by the U.S. Army Air Corps.

Curtiss-Wright’s Chief Engineer, Donovan Reese Berlin, had taken the tenth production P-36A Hawk, Air Corps serial number 38-10, and had its air-cooled radial engine replaced with the Harold Caminez-designed, liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-C13 (V-1710-19).

Donovan Reese Berlin. (Niagara Aerospace Museum)

The V-1710-19 was a single overhead cam (SOHC) 60° V-12 engine with four valves per cylinder and a compression ration of 6.65:1. It had a Normal Power rating of 910 horsepower at 2,600 r.p.m. at Sea Level, and 1,060 horsepower at 2,950 r.p.m. for Takeoff. At 10,000 feet (3,048 meters), the V-1710-19 had Maximum Continuous Power rating of 1,000 horsepower at 2,600 r.p.m., and Military Power rating of 1,150 horsepower at 2,950 r.p.m. The engine required 100/130-octane aviation gasoline. It drove a three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The V-1710-19 was 8 feet, 1.75 inches (2.483 meters) long, 3 feet, 4.75 inches (1.035 meters) high and 2 feet, 4.94 inches (0.735 meters) wide. It weighed 1,320 pounds (599 kilograms).

Curtiss-Wright XP-40 38-10 (SDASM 16_008531)

At 1,829.39-cubic-inches (29.978 liters), the original Pratt & Whitney Twin Wasp S1C1-G (R-1830-17) 14-cylinder radial engine had greater displacement and produced 80 horsepower more for takeoff than the Allison V-12. The long, narrow V-12, though, allowed for a much more streamlined engine cowling for higher speed and greater efficiency.

XP-40 16_008533
Curtiss-Wright XP-40 prototype. (SDASM 16_008534)
The Curtiss XP-40 prototype at Langley Field in the original configuration. (NASA)
The Curtiss-Wright XP-40 in the original configuration at Langley Field. (NASA)
Everett Edward Elliot (1907–1981).

In the early testing, the XP-40 was much slower than expected, reaching only 315 miles per hour (507 kilometers per hour). (The P-36A Hawk had a maximum speed of  313 miles per hour). Engineers experimented with different placement for the coolant radiator, oil coolers and the engine air intake. The Air Corps project officer, Lieutenant Benjamin Scovill Kelsey, had the prototype sent to the National Advisory Committee for Aeronautics (NACA) Research Center at Langley Field, Virginia, where the full-size airplane was placed inside a wind tunnel.

Over a two-month period, NACA engineers made a number of improvements. The radiator was moved forward under the engine and the oil coolers utilized the same air scoop. The exhaust manifolds were improved as were the landing gear doors.

When they had finished, Lieutenant Kelsey flew the modified XP-40 back to Curtiss. Its speed had been increased to 354 miles per hour (570 kilometers per hour), a 12% improvement.

By December 1939 the airplane had been further improved and was capable of 366 miles per hour (589 kilometers per hour).

The Curtiss-Wright XP-40 prototype in a wind tunnel at Langley Field, 24 April 1939. (NASA)
Curtiss XP-40 in the NACA Full Scale Wind Tunnel at Langley Field, Virginia, April 1939. (NASA)
Curtiss-Wright XP-40 in the NACA Full Scale Wind Tunnel at Langley Field, Virginia, 24 April 1939. (NASA)

The Curtiss Hawk 75P, XP-40 38-10, was 31 feet, 1 inch (9.574 meters) long with a wingspan of 37 feet, 4 inches (11.354 meters) and overall height of 12 feet, 4 inches (3.734 meters). It had an empty weight of 5,417 pounds (2,457.1 kilograms) and maximum gross weight of 6,870 pounds (3,116.2 kilograms).

The prototype had a maximum speed of 342 miles per hour (550 kilometers per hour) at 12,200 feet (3,719 meters) with a gross weight of 6,260 pounds (2,839.5 kilograms). Its range was 460 miles (740 kilometers) flying at 299 miles per hour (481 kilometers per hour) with 100 gallons (378.5 liters) of fuel. With 159 gallons (601.9 liters) and with speed reduced to 200 miles per hour (322 kilometers per hour), the XP-40 had a maximum range of 1,180 miles (1,899 kilometers).

The prototype was armed with two air-cooled Browning AN-M2 .50-caliber machine guns mounted above the engine and synchronized to fire forward through the propeller arc.

The Air Corps placed an initial order for 524 P-40s. This was the largest single order for airplanes by the U.S. military up to that time. The first production model was the P-40 Warhawk, armed with two .50-caliber machine guns. There was only one P-40A variant which was a P-40 modified as a camera aircraft. The definitive pursuit model was the P-40B Warhawk, which retained the two .50-caliber guns of the P-40 and added two Browning M2 .30-caliber machine guns to each of the wings.

A Curtiss-Wright P-40B Warhawk, 79th Pursuit Squadron, 20th Pursuit Group, Hamilton Field, California, 1940. (U.S. Air Force)

The P-40B was best known as the airplane flown by the American Volunteer Group fighting for China against the Japanese. They were called the “Flying Tigers”. Between 1939 and 1945, Curtiss built 13,738 P-40s in many configurations. They flew in combat in every theater of operations during World War II.

A Curtiss-Wright Hawk 81-A3 (Tomahawk IIb) of the American Volunteer Group, Kunming, China, 1942. (U.S. Air Force)

© 2018, Bryan R. Swopes

13 October 1950: Lockheed L-1049 Super Constellation

The prototype Lockheed L-1049 Super Constellation, N67900. (Lockheed Martin Aeronautics Company)

13 October 1950: The prototype Lockheed L-1049 Super Constellation made its first flight at the Lockheed Air Terminal in Burbank, California.

With the expansion in commercial air travel immediately following World War II, airlines required transports with longer range and greater passenger and cargo capacity. They needed airplanes that could provide lower seat-per-mile operating costs than existing types.

To meet these needs, Lockheed considered discontinuing production of the the current L-749 Constellation in favor of developing a completely new turbojet-powered transport. But due to the the time required to design and produce such a completely new design, and the much greater fuel consumption of jet engines, Lockheed determined that the most efficient course would be to improve the existing L-749 Constellation’s design to increase its load carrying capability.

Design of the L-1049 Super Constellation started February 1950, with the design team led by Kelly Johnson.

Lockheed XC-69 Constellation 43-10309 (L-049 NX25600) at the Lockheed Air Terminal, Burbank, California. (Lockheed Martin Aeronautics Company)

Instead of building a complete new airplane, the original XC-69 prototype, which had been parked at Howard Hughes’ private airport near Culver City, was purchased by Lockheed and flown back to the Lockheed Air Terminal in Burbank. After the war, the Constellation prototype was sold to Howard Hughes’ Hughes Aircraft Company for $20,000 and registered as NX67900. In May 1950, Lockheed bought the prototype back from Hughes for $100,000 and it was again registered as NC25600. It had accumulated just 404 flight hours up to this time.

The Lockheed XC-69 Constellation prototype, 43-10309, is parked behind the Hughes XF-11, 44-70155, at Culver City, California, 7 July 1946. (University of Nevada, Las Vegas Libraries)

The XC-69 was cut into three sections. A 10 foot, 8.8 inch (3.272 meters) long, 11 foot, 7.3 inch (3.538 meter) diameter, cylindrical section was added forward of the front wing spar, and a 7 foot, 8 inch (2.337 meters) cylindrical section with the same diameter, aft of the rear spar.

The wings, fuselage and landing gear of the L-1049 were strengthened for increased gross weight. The height of the vertical fins was increased 2.5 inches (6.35 centimeters) for improved longitudinal stability. The cabin floor area was increased by 33% to 744 square feet, and cargo volume, 51% to 656 cubic feet.

Lockheed L-1049 Super Constellation three-view illustration with dimensions. (Lockheed Aircraft Corporation)

The L-1049 had accommodations for 76–94 passengers and crew. (The L-749A Constellation carried 47–63). Other changes included a 25% increase in cockpit window height, and square passenger windows (a requirement of Northwest Airlines). The fuel load was increased by 5,000 pounds, and the range by 300 miles. The Super Constellation’s cruise speed was cruise speed 25–40 m.p.h. slower due to the increased weight.

L-1049 serial numbers 4001–4014 had cockpit stations for a pilot, copilot, flight engineer and an observer. Beginning with 4015, a radio operator’s station as added.

Illustration of the Super Constellation’s general arrangement from Lockheed Report 7786 Crew Operating Manual for Lockheed Model 1049 Super Constellation Air[planes, revised 1 May 1952. (Lockheed Aircraft Corporation)
Total fuel capacity was 3,660 U.S. gallons (13,855 liters). Each engine was supplied by engine oil tank with a capacity of 49 gallons (185.5 liters).

The first production Lockheed L-1049 Super Constellation, s/n 4001, N6201C. (Lockheed Martin Aeronautics Company)

The L-1049 was powered by four air-cooled, direct-fuel-injected, 3,347.662 cubic-inch-displacement (54.858 liters) Wright Aeronautical Division 956C18CA1 eighteen-cylinder radial engines with a compression ratio of 6.70:1. The 956C18CA1 had a continuous power rating of 2,300 horsepower at 2,600 r.p.m., and 2,700 horsepower at 2,900 r.p.m. for takeoff. The engines turned three-bladed Hamilton Standard propellers through a 0.4375:1 propeller gear reduction. The engine was 6 feet, 6.47 inches (1.993 meters) long, 4 feet, 7.62 inches (1.413 meters) in diameter, and weighed 2,962 pounds (1,343.5 kilograms).

The L-1049 had a maximum speed (VNO) of 260 knots (299 miles per hour/482 kilometers per hour) from Sea Level to 11,000 feet (3,353 meters). Above that altitude, speed was reduced by 9 knots (10 miles per hour/17 kilometers per hour) for each 2,000 foot (610 meters) increase. Maneuvering speed (VA) was 180 knots (207 miles per hour/333 kilometers per hour). The maximum operating altitude was 25,000 feet (7,620 meters). The cabin was pressurized to 5.5 p.s.i. (0.379 Bar).

The Los Angeles Times reported:

“NEXT THING TO JET—Eighteen feet longer than the standard Connie, Lockheed’s new Super Constellation is announced “to bridge the gap between modern planes and the first American jet transport.” Fifty million dollars in orders have been received.”

LOCKHEED UNVEILS SUPERTRANSPORT

Giant Constellation Carries 110 Passengers
Is Forerunner of Transocean Jet Aircraft

     Lockheed’s new Super Constellation—18.4 feet longer than the standard Connie—was announced yesterday as “designed to bridge the gap between modern planes and the first Americanjet transport.”

     Similar in appearance to its famous predecessor, the prototype of the new ship was flown for the first time last Friday, out of Lockheed Air terminal, Burbank, officials said.

     It will be introduced into service with the latest type reciprocating engines, subsequently will be powered with new compound engine and finally will utilize turbo-prop engines as the final link with pure jet transports of the future.

     “The new transport will incorporate much of the proven design and equipment of the current Constellation,” Lockheed spokesmen said, “and at the same time will carry all available modern features that testing has proved worthwhile.”

     Among teh latter will be electro-pneumatic de-icing such as is used on Lockheed’s high-speed jet aircraft. Old-type rubber boot and hot air de-icing has been found inadequate for higher speeds and altitudes, it was explained.

     The Super Connie is described as “the first truly nonstop trans-Atalantic transport ever built, 50 m.p.h. faster on over-ocean runs than competitive airplanes.”

     Measuring 113 feet 7 inches from nose to tail, its cabin will carry 76 standard-fare passengers or up to 110 coach fare, 35% more than present Constellations, with 72% more space for baggage and cargo.

Big Navy Engines

     The Super Connie is said to be the only transport in the world that will accommodate the powerful new compound Wright engines now developing 3500 h.p. each on long-range P2V patrol bombers built for the Navy by Lockheed.

     Its structural strength is such  that it can carry wing-tip fuel tanks, as do military jets on long-range flights, should such a feature become desirable to operators.

     Fifty million dollars in orders already have been received for the new transport from two airline operators and the military services

Los Angeles Times, Tuesday, 17 October 1950, Part II, Page 2, Columns 1–3

The first production Lockheed L-1049 Super Constellation, serial number 4001, registered N6201C, was delivered to Eastern Airlines in March 1952.

Produced from 1951 through 1958, Lockheed built 259 commercial Super Constellations and 320 C-121 military versions.

The first production Lockheed L-1049 Super Constellation, N6201C, s/n 4001. This airplane was delivered to Eastern Airlines in March 1952. (Lockheed Martin Aeronautics Company)
Eastern Airlines Lockheed L-1049 Super Constellation N6203C. (Eastern Airlines)

© 2023, Bryan R. Swopes

9 October 1987

PP1, the first prototype of the EH101, ZF 641. (Paul Thallon)
PP1, the first prototype of the EH101, ZF 641. (Paul Thallon)

9 October 1987: Westland Helicopters Ltd. Chief Test Pilot John Trevor Eggington and Deputy Chief Test Pilot Colin W. Hague take PP1, the first EH 101 prototype, for its first flight at Yeovil, Somerset, United Kingdom. The helicopter had been completed 7 April 1987 and underwent months of ground testing.

A medium-lift helicopter, the EH 101 was a joint venture of Westland and Costruzioni Aeronautiche Giovanni Agusta S.p.A. of Italy, known then as European Helicopter Industries, or EHI, to produce a replacement for the Sikorsky S-61 Sea King, which both companies built under license. The Italian and British companies merged in July 2000 and are now known as AgustaWestland NV, with corporate headquarters in the Netherlands. After the merger of the two helicopter manufacturers, the EH 101 was redesignated AW101. It is also known as the Merlin.

Canadian Forces CH-149 Cormorant, a search and rescue variant of the AgustaWestland AW101. (Korona4Reaal via Wikipedia)
Canadian Forces CH-149 Cormorant 149902, a search and rescue variant of the AgustaWestland AW101. (Korona4Reel via Wikipedia)

Nine prototypes were built, four by Agusta at Vergiate, Italy, and five by Westland at Yeovil. During testing, Agusta-built PP2 and Westland’s PP4 were destroyed.

PP1, the first prototype, was powered by three General Electric CT7-2A turboshaft engines which were rated at 1,625 shaft horsepower, each. In production, Rolls-Royce/Turbomeca RTM322 engines are optional, as are the more powerful CT7-8s. Produced in both military and civil variants, the Merlin is used in search-and-rescue, anti-submarine warfare, mine countermeasures, airborne early warning and utility configurations. Production began in 1995 and continues today.

The AgustaWestland AW101 Merlin is a single main rotor/tail rotor medium helicopter powered by three turboshaft engines. It is equipped with retractable tricycle landing gear. The helicopter may be flown by a single pilot and uses a digital flight control system. The actual flight crew is dependent on aircraft configuration and mission.

The five blade composite main rotor has a diameter of 61 feet, 0 inches (18.593 meters) and turns counterclockwise as seen from above. (The advancing blade is on the helicopter’s right side.) The blades use a BERP feature that was pioneered on the Westland Lynx AH.1 Lynx, G-LYNX, which Trevor Eddington flew to a world speed record, 11 August 1986. This allows higher speeds, greater gross weight and is quieter than a standard blade. A four blade tail rotor with a diameter of 13 feet, 1 inch (3.962 meters) is positioned on the left side of the tail boom in pusher configuration. It rotates clockwise as seen from the helicopter’s left. The tail rotor pylon is inclined to the left.

PP.5 parked aboard HMS iron Duke. (Royal Navy)
PP5, the prototype  ASW variant parked aboard HMS Iron Duke (F234). (Royal Navy)

Overall length of the AW101 is 74 feet, 10 inches (22.809 meters) with rotors turning. The fuselage is 64 feet, 1 inch (19.533 meters) long. Overall height of the helicopter is 18 feet, 7 inches (5.664 meters). Its empty weight is 20,018 pounds (9,080 kilograms) and the maximum takeoff weight (MTOW) is 34,392 pounds (15,600 kilograms).

The RTM322 engine was developed as a joint venture between Rolls-Royce and Turboméca, but is now a Safran Helicopter Engines product. The RTM322 02/8 is a modular reverse-flow turboshaft engine with a 3-stage axial-flow, 1 stage centrifugal-flow compressor and 2-stage high-pressure, 2-stage power turbine. The output drive shaft turns 20,900 r.p.m. The RTM322 02/08 is rated at 2,000 shaft horsepower, and 2,270 shaft horsepower for takeoff. It has a One Engine Inoperative (OEI) rating of 2,472 shaft horsepower (30 minute limit). The engine is 3 feet, 10.1 inches (1.171 meters) long, 2 feet, 1.5 inches (0.648 meters) in diameter and weighs 503 pounds (228.2 kilograms).

The AW101’s cruise speed is 278 kilometers per hour (150 knots). The hover ceiling in ground effect (HIGE) is 3,307 meters (10,850 feet). In utility configuration, the Merlin carries fuel for 6 hours, 30 minutes of flight and has a maximum range of 1,363 kilometers (735 nautical miles).

John Trevor Egginton, Chief Test Pilot, Westland Helicopters. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
John Trevor Eggington, Chief Test Pilot, Westland Helicopters. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Trevor Eggington retired from Westland in 1988 and Colin Hague became the company’s chief test pilot. In 2003, Hague was appointed an Officer of the Most Excellent (OBE) Order of the British Empire for his contributions to aviation.

Deputy Chief Test Pilot Colin W.Hague, with the first prototype EH101, PP1. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Deputy Chief Test Pilot Colin W. Hague, with the first prototype EH101, PP1. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Since 2010, PP1 has been used as an instructional airframe for maintenance personnel at RNAS Culdrose, Cornwall, UK.

ZF641, the first prototype of the EH101 (AW101) Merlin, at RNAS Culdrose, 2010. (dyvroeth)
ZF 641, the first prototype of the EH 101 (AW101) Merlin, at RNAS Culdrose, 2010. (dyvroeth)

© 2016, Bryan R. Swopes

9 October 1890

Clément Ader, 1897

9 October 1890: At the Château d’Amainvilliers, near Gretz, Clément Ader’s flying machine, Éole, flew for the first time.

An inventor, Ader had recently spent months in Algeria, observing the vultures. When he returned to France he began to design and build a bat-like machine with a wing spread of 46 feet (14 meters), weighing 1,100 pounds (500 kilograms), powered by a light-weight 4-cylinder steam engine. The engine produced 20 horsepower and drove a 4-bladed tractor propeller. The machine was named for the Greek god who controlled the winds, Aeolus.

The aircraft took off under its own power, climbed to an altitude of approximately 20 centimeters (8 inches) and flew 50 meters (164 feet). The flight was witnessed by two gentlemen named Espinosa and Vallier.

On a subsequent flight, Éole flew a similar distance, but came in contact with some carts that were under its path. It overturned and was destroyed.

Clément Ader went on to build other flying machines and remained interested in flight for the remainder of his life.

L'Eole steam powered aircraft, circa 1890
Illustration of Ader’s Éole, circa 1891
Patent issued 19 April 1890
Patent 205155 issued 19 April 1890 to Clément Ader. (PHGCOM)

© 2022, Bryan R. Swopes