Tag Archives: Liquid-Fueled Rocket

29 May 1947, 0130 GMT

Hermes II (NASA)

29 May 1947: At 1930 hours, Mountain Daylight Time, a Hermes II two-stage, liquid-fueled rocket was launched from Launch Complex 33 at southern end of the White Sands Proving Grounds, east of Las Cruces, New Mexico.

White Sands Proving Grounds Gate sign

Earlier in the day, a launch attempt failed when the first stage engine failed to produce thrust. Repairs were made and the second attempt succeeded—sort of. . .

The plan was for the rocket to arc toward the north, heading for the far end of the proving grounds. Instead, the Hermes II arced to the SOUTH.

The Range Safety Officer was prevented from sending a DESTRUCT signal when a program scientist physically restrained him. The rocket peaked at 35 nautical miles (65 kilometers), passed over Fort Bliss and El Paso, and after about five minutes of flight, hit the ground about one-half mile from the Buena Vista Airport in Ciudad Juárez, Mexico.

People standing on the rim of the crater on the night of 29 May 1947. (El Paso Times)

At impact, the rocket dug a crater 50 feet (15.2 meters) across and 24 feet (7.3 meters) deep. The explosion shook buildings in El Paso and 25 miles (40 kilometers) away in Fabens, Texas. The rocket barely missed a powder magazine where mining companies were storing dynamite and other explosives.

Fortunately, there were no injuries, and property damage was minor.

Hermes II crater near Ciudad Juárez, Mexico. The crater is approximately  50 feet across and 24 feet deep, (White Eagle Aerospace)

Hermes II was the world’s first multi-stage rocket. Developed from the German V-2 rocket (Vergeltungswaffen 2), it was intended to serve as a test bed for ramjet development. The upper stage had a broad wing for flight tests of a split-wing two-dimensional ducted-airfoil ramjet. (For this launch the ramjet was not operational.) The span of the fins were increased to improve stability.

The Hermes II was 51.50 feet (15.70 meters) tall. The tail fins had a span of 17.75 feet (5.41 meters), and the second stage wing span was 15.26 feet (4.65 meters). The rocket had a gross weight of 31,750 Pounds (14,400 kilograms). The liquid oxygen/alcohol-fueled engine produced 60,000 pounds of thrust (267 kilonewtons).

In 1948, the Hermes II was redesignated RTV-G-3 by the U.S. Army.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

15 April 1970, 01:09:40 UTC: T Plus 077:56:40.0

Impact crater of the Apollo 13/Saturn V AS-508 S-IVB third stage, photographed by the Lunar Reconnaissance Orbiter. The crater is approximately 30 meters (98 feet) across. (NASA)

15 April 1970, 01:09:40 UTC: T plus 077:56:40.0: The Apollo 13 Saturn S-IVB-508 third stage impacted the surface of The Moon north of Mare Cognitum. (S. 2° 33′ 00″, W. 27° 52′ 48″)The S-IVB hit the lunar surface at a velocity of 2.58 kilometers per second (5,771 miles per hour). The impact energy was 4.63 x 1017 ergs (1.04 kiloton).

The impact was detected by seismometers placed on the Moon by Apollo 12 astronauts Pete Conrad and Alan Bean. This was part of the Apollo Lunar Surface Experiments Package, or ALSEP.

Seismograph tracings of Apollo 13 S-IVB impact. (NASA)

The Apollo 12 seismometer was located 135 kilometers (83.9 miles) from the Apollo 13 third stage impact. The signals were used to calibrate the instrument package, which was in service from 1969 to 1977.

The Saturn V third stage was designated Saturn S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds (118,841 kilograms). The third stage had one Rocketdyne J-2 engine which used liquid hydrogen and liquid oxygen for propellant. Itproduced 232,250 pounds of thrust (1,033.10 kilonewtons). The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

A Saturn V S-IVB third stage. (NASA)

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

28 March 1935

Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution, Image Number 84-8949)
Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution)

28 March 1935: Near Roswell, New Mexico, Robert H. Goddard successfully launched the first gyroscopically-stabilized liquid-fueled rocket. In a 20-second flight, the A Series rocket, number A-5, reached an altitude of 4,800 feet (1,463 meters) and traveled 13,000 feet (3,962 meters) down range. Its speed was 550 miles per hour (885 kilometers per hour). During the flight, the rocket corrected its flight path several times.

"Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower." (NASA)
“Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower.” (U.S. Air Force)
Goddard A-series rocket. (Clark University)

The A Series rockets were of varying lengths and mass. The representative A-series rocket displayed at the National Air and Space Museum is 15 feet, 4½ inches (468.63 centimeters) long with a diameter of 9 inches (22.86 centimeters). The span across the fins is 1 foot, 9½ inches (54.61 centimeters). It weighs 78.5 pounds (35.6 kilograms). The rocket was fueled with gasoline and liquid oxygen, pressurized with nitrogen.

A gyroscope controlled vanes placed in the engine’s exhaust, providing stabilization during powered flight.

Goddard flew the A-sereies 14 times between 15 January and 29 October 1935.

The National Air and Space Museum describes the rocket’s construction:

“Aluminum skin, thin gauge, a long tail section from bottom of fins to bottom of mid-section. Aluminum skin also on parachute section and nosecone wholly of spun aluminum except for steel attachment screw. Steel skin (for greater strength and insulation) below nosecone, over mid-section (over propellant tanks), and around small section above fins. One steel tube or pipe on each side of rocket, along propellant section; one smaller diameter copper tube on one side. Steel nozzle and other interior components. Fabric parachute.”

Goddard is the “Father of Modern Rocketry.” Many of his developments were copied by German engineers as they developed the V2 rocket of World War II. And this led to America’s own post-War rocket developments, including the mighty Saturn V moon rocket.

This photograph, taken at the launch site, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, Harry F. Guggenheim, Dr. Goddard, Charles A. Lindbergh, Nils T. Ljungquist and Charles Mansur. (U.S. Air Force)
This photograph, taken at the launch site in New Mexico, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, machinist; Harry F. Guggenheim, philanthropist; Dr.Robert H. Goddard; Charles A. Lindbergh, aviator; Nils T. Ljungquist, machinist; and Charles Mansur, a welder. (U.S. Air Force)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. (NASM)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. It is constructed from parts of several A-series rockets which had been test flown. (NASM)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

16 March 1926

Robert Hutchins Goddard, Ph.D. (1882–1945) (NASM)

16 March 1926: At 2:30 in the afternoon, Robert Hutchings Goddard, Ph.D., a professor in physics at Clark University, launched the first successful liquid-fueled rocket from his Aunt Effie’s farm (known as “the Asa Ward Farm”) at Auburn, Massachussetts.

In his diary, Dr. Goddard wrote:

“March 16. Went to Auburn with S [Henry Sachs] in am. E [Esther Christine Kisk Goddard] and Mr. Roope [Percy M. Roope, Ph.D.] came out at 1 p.m. Tried rocket at 2:30. It rose 41 feet & went 184 feet in 2.5 secs., after the lower half of the nozzle burned off. . . .”

Robert H. Goddard, Ph.D., with Nell, the first liquid-fueled rocket, mounted on the launch stand at Auburn, Massachusetts, 16 March 1926. (Percy M. Roope, Ph.D.)

The following day, he described the rocket flight in greater detail:

“”The first flight with a rocket using liquid propellants was made yesterday at Aunt Effie’s farm in Auburn. The day was clear and comparatively quiet. The anemometer on the Physics lab was turning leisurely when Mr. Sachs and I left in the morning, and was turning as leisurely when we returned at 5:30 pm. Even though the release was pulled, the rocket did not rise at first, but the flame came out, and there was a steady roar. After a number of seconds it rose, slowly until it cleared the frame, and then at express train speed, curving over to the left, and striking the ice and snow, still going at a rapid rate. It looked almost magical as it rose, without any appreciably greater noise or flame, as if it said ‘I’ve been here long enough; I think I’ll be going somewhere else, if you don’t mind.’ Esther said that it looked like a fairy or an aesthetic dancer, as it started off. The sky was clear, for the most part, with large shadowy white clouds, but late in the afternoon there was a large pink cloud in the west, over which the sun shone. One of the surprising [the rest of this sentence is from the next page] things was the absence of smoke, the lack of very loud roar, and the smallness of the flame.”

Dr. Goddard’s diary entry for 17 March 1926. (Clark University Archives and Special Collections)
Goddard’s rocket, “Nell.”(Clark University Archives and Special Collections)

The rocket, called Nell ¹ and known as Goddard 1, was fueled by gasoline and liquid oxygen. It was 11 feet, 3 inches (3.429 meters) tall and weighed approximately 10.4 pounds (4.7 kilograms) when fueled. The engine produced an estimated 9 pounds (40 newtons) of thrust.

Dr. Robert H. Goddard with "Nell," a liquid-fueled rocket, in hi sworkshop at Clark University. (National Museum of the United States Air Force)
Dr. Robert H. Goddard with “Nell,” a liquid-fueled rocket, in his workshop at Clark University, Worcester, Massachussetts. (National Museum of the United States Air Force
Apollo 10 (AS-505) lifts off from Launch Complex 39B at the Kennedy Space Center, Cape Canaveral, Florida, 16:49:00 UTC, 18 May 1969. (NASA)
Just 43 years later, 16:49:00 UTC, 18 May 1969, a liquid-fueled multi-stage Saturn V rocket, Apollo 10 (AS-505) lifts off from Launch Complex 39B at the Kennedy Space Center, Cape Canaveral, Florida. (NASA)

¹ Nell was a reference to the title character, “Salvation Nell,” from a 1908 play by Edward Brewster Sheldon. The character was portrayed by a leading actress of the time, Minnie Maddern Fiske, née Maria Augusta Davey, and popularly known simply as “Mrs. Fiske.”

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

15 December 1965

Gemini 7, as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7, as seen from Gemini 6A, 15 December 1965. (Thomas P. Stafford/NASA)

15 December 1965: At 13:37:26 UTC, Gemini 6A, with NASA astronauts Captain Walter M. Schirra, Jr., United States Navy and Major Thomas P. Stafford, United States Air Force, on board, lifted off from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida. During its fourth orbit, Gemini 6A rendezvoused with Gemini 7, carrying Major Frank F. Borman II, USAF, and LCDR James A. Lovell, Jr., USN.

This was the first time that two manned space vehicles had rendezvoused in Earth orbit.

The two spacecraft remained together for 5 hours, 19 minutes before separating to a distance of approximately 10 miles (16 kilometers).

Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)

Gemini 7 had been in orbit since 4 December. Gemini 6, then 6A, had been postponed several times before finally launching on 15 December. It would return to Earth the following day, landing in the North Atlantic Ocean. Gemini 7 remained in orbit until 18 December.

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a series of cone-shaped segments forming a reentry module and an adapter section. It had an overall length of 18 feet, 9.84 inches (5.736 meters) and a maximum diameter of 10 feet, 0.00 inches (3.048 meters) at the base of the equipment section. The reentry module was 11 feet (3.353 meters) long with a maximum diameter of 7 feet, 6.00 inches (2.347 meters). The Gemini re-entry heat shield was a spherical section with a radius of 12 feet, 0.00 inches (3.658 meters). The weight of the Gemini spacecraft varied from ship to ship. Gemini VII had a gross weight of 8,076.10 pounds (3,663.26 kilograms) at launch. It was shipped from St. Louis to Cape Kennedy in early October 1965.

The Titan II GLV was a “man-rated” variant of the Martin Marietta Corporation SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program. The GLV-7 first and second stages were shipped from Middle River to Cape Kennedy on 9 October 1965.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-7 had produced an average of 462,433 pounds of thrust (2,057.0 kilonewtons). The second stage was 25 feet, 6.375 inches (7.031 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,584 pounds of thrust (456.3 kilonewtons).

The Gemini/Titan II GLV-7 combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 346,228 pounds (157,046 kilograms) at ignition.

Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)
Gemini 7 as seen from Gemini 6A, 15 December 1965. (NASA)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather