Tag Archives: Liquid-Fueled Rocket

3 October 1942

Aggregat 4 number V4 ready for launch at Prufstand VII, 3 October 1942. (Bundesarchiv)
Aggregat 4 prototype (probably V-3) ready for launch at Prüfstand VII, August 1942. (Bundesarchiv, Bild 146-1978-Anh.026-01 146-1978-Anh.026-01)

3 October 1942: First successful launch of a prototype Aggregat 4 (A4) rocket, V-4 (Versuchsmuster 4), from Prüfstand VII at Heereversuchanstalt Peenemünde, or HVP, the Army Research Center at Peenemünde on the island of Usedom, off the Baltic coast of Germany.

The rocket engine burned for 58 seconds. The rocket reached an altitude of 85–90 kilometers (53–56 miles), and traveled approximately 190 kilometers (118 miles) downrange. Although V-4 did not reach the Kármán line at 100 kilometers, the currently accepted altitude at which space begins, this Aggregat 4 is still considered to have been the first rocket to reach space.

Major General Walter Doernberger, a German military officer and doctor of engineering who was in command of the V1 and V2 development programs, said, “This third day of October, 1942, is the first of a new era in transportation, that of space travel.”

A-4 rocket launch Peenemunde, 3 October 1942. (NASM)
Aggregat 4 (prototype V-4) launch from Prüfstand VII, Peenemünde, Germany, 3 October 1942. (NASM)
V-2 rocket launch at Peenemünde, on the island of Usedom in the Baltic Sea. (Bundesarchiv)
Aggregat 4 (V-2) rocket launch at Peenemünde, on the island of Usedom in the Baltic Sea. (Bundesarchiv)
Dr. Frhr. Wernher von Braun
Dr. Frhr. Wernher von Braun

Development of the A4 began in 1938 under Dr. Frhr. Wernher von Braun. The first prototype, Versuchsmuster 1  (V-1), was being prepared for launch on 18 April 1942. During test runs of the engine, it was badly damaged and was scrapped. Prototype V-2 was launched 13 June 1942 and reached approximately 15,000 feet (4,572 meters), but the guidance system failed and the rocket crashed into the Baltic Sea a short distance from the launch site. V-3 suffered a structural failure, 16 August 1942. V-4, the fourth prototype Aggregat 4, was the first successful flight.

The V2, or Vergeltungswaffen 2 (also known as the A4, or Aggregat 4) was a ballistic missile with an empty weight of approximately 10,000 pounds (4,536 kilograms) and weighing 28,000 pounds (12,700 kilograms), fully loaded. It carried a 738 kilogram (1,627 pound) (sources vary) explosive warhead of amatol, a mixture of TNT and ammonium nitrate. The propellant was a 75/25 mixture of of ethanol and water with liquid oxygen as an oxidizer.

The complete rocket was 14.036 meters (46.050 feet) long, and had a maximum diameter of 1.651 meters (5.417 feet). The rocket was stabilized by four large fins, 4.035 meters (13.238 feet) long, with a maximum span of  3.564 meters (11.693 feet). The leading edge of these fins was swept 60°, and 3°. A small guide vane was at the outer tip of each fin, and other vanes were placed in the engine’s exhaust plume.

Cutaway illustration of a V-2 rocket. (U.S. Army)

When launched, the rocket engine burned for 65 seconds, accelerating the rocket to 3,580 miles per hour (5,760 kilometers per hour) on a ballistic trajectory. The maximum range of the rocket was 200 miles (320 kilometers) with a peak altitude between 88 and 128 miles (142–206 kilometers), depending on the desired range. On impact, the rocket was falling at 1,790 miles per hour (2,880 kilometers per hour), about Mach 2.35, so its approach would have been completely silent in the target area.

The V-2 could only hit a general area and was not militarily effective. Germany used it against England, France, The Netherlands and Belgium as a terror weapon. More than 3,200 V-2 rockets were launched against these countries.

V-2 launch site.
V-2 launch site.

© 2016, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

29 May 1947, 0130 GMT

Hermes II (NASA)

29 May 1947: At 1930 hours, Mountain Daylight Time, a Hermes II two-stage, liquid-fueled rocket was launched from Launch Complex 33 at southern end of the White Sands Proving Grounds, east of Las Cruces, New Mexico.

White Sands Proving Grounds Gate sign

Earlier in the day, a launch attempt failed when the first stage engine failed to produce thrust. Repairs were made and the second attempt succeeded—sort of. . .

The plan was for the rocket to arc toward the north, heading for the far end of the proving grounds. Instead, the Hermes II arced to the SOUTH.

The Range Safety Officer was prevented from sending a DESTRUCT signal when a program scientist physically restrained him. The rocket peaked at 35 nautical miles (65 kilometers), passed over Fort Bliss and El Paso, and after about five minutes of flight, hit the ground about one-half mile from the Buena Vista Airport in Ciudad Juárez, Mexico.

People standing on the rim of the crater on the night of 29 May 1947. (El Paso Times)

At impact, the rocket dug a crater 50 feet (15.2 meters) across and 24 feet (7.3 meters) deep. The explosion shook buildings in El Paso and 25 miles (40 kilometers) away in Fabens, Texas. The rocket barely missed a powder magazine where mining companies were storing dynamite and other explosives.

Fortunately, there were no injuries, and property damage was minor.

Hermes II crater near Ciudad Juárez, Mexico. The crater is approximately  50 feet across and 24 feet deep, (White Eagle Aerospace)

Hermes II was the world’s first multi-stage rocket. Developed from the German V-2 rocket (Vergeltungswaffen 2), it was intended to serve as a test bed for ramjet development. The upper stage had a broad wing for flight tests of a split-wing two-dimensional ducted-airfoil ramjet. (For this launch the ramjet was not operational.) The span of the fins were increased to improve stability.

The Hermes II was 51.50 feet (15.70 meters) tall. The tail fins had a span of 17.75 feet (5.41 meters), and the second stage wing span was 15.26 feet (4.65 meters). The rocket had a gross weight of 31,750 Pounds (14,400 kilograms). The liquid oxygen/alcohol-fueled engine produced 60,000 pounds of thrust (267 kilonewtons).

In 1948, the Hermes II was redesignated RTV-G-3 by the U.S. Army.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

15 April 1970, 01:09:40 UTC: T Plus 077:56:40.0

Impact crater of the Apollo 13/Saturn V AS-508 S-IVB third stage, photographed by the Lunar Reconnaissance Orbiter. The crater is approximately 30 meters (98 feet) across. (NASA)

15 April 1970, 01:09:40 UTC: T plus 077:56:40.0: The Apollo 13 Saturn S-IVB-508 third stage impacted the surface of The Moon north of Mare Cognitum. (S. 2° 33′ 00″, W. 27° 52′ 48″)The S-IVB hit the lunar surface at a velocity of 2.58 kilometers per second (5,771 miles per hour). The impact energy was 4.63 x 1017 ergs (1.04 kiloton).

The impact was detected by seismometers placed on the Moon by Apollo 12 astronauts Pete Conrad and Alan Bean. This was part of the Apollo Lunar Surface Experiments Package, or ALSEP.

Seismograph tracings of Apollo 13 S-IVB impact. (NASA)

The Apollo 12 seismometer was located 135 kilometers (83.9 miles) from the Apollo 13 third stage impact. The signals were used to calibrate the instrument package, which was in service from 1969 to 1977.

The Saturn V third stage was designated Saturn S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds (118,841 kilograms). The third stage had one Rocketdyne J-2 engine which used liquid hydrogen and liquid oxygen for propellant. Itproduced 232,250 pounds of thrust (1,033.10 kilonewtons). The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

A Saturn V S-IVB third stage. (NASA)

© 2017, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

28 March 1935

Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution, Image Number 84-8949)
Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution)

28 March 1935: Near Roswell, New Mexico, Robert H. Goddard successfully launched the first gyroscopically-stabilized liquid-fueled rocket. In a 20-second flight, the A Series rocket, number A-5, reached an altitude of 4,800 feet (1,463 meters) and traveled 13,000 feet (3,962 meters) down range. Its speed was 550 miles per hour (885 kilometers per hour). During the flight, the rocket corrected its flight path several times.

"Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower." (NASA)
“Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower.” (U.S. Air Force)
Goddard A-series rocket. (Clark University)

The A Series rockets were of varying lengths and mass. The representative A-series rocket displayed at the National Air and Space Museum is 15 feet, 4½ inches (468.63 centimeters) long with a diameter of 9 inches (22.86 centimeters). The span across the fins is 1 foot, 9½ inches (54.61 centimeters). It weighs 78.5 pounds (35.6 kilograms). The rocket was fueled with gasoline and liquid oxygen, pressurized with nitrogen.

A gyroscope controlled vanes placed in the engine’s exhaust, providing stabilization during powered flight.

Goddard flew the A-sereies 14 times between 15 January and 29 October 1935.

The National Air and Space Museum describes the rocket’s construction:

“Aluminum skin, thin gauge, a long tail section from bottom of fins to bottom of mid-section. Aluminum skin also on parachute section and nosecone wholly of spun aluminum except for steel attachment screw. Steel skin (for greater strength and insulation) below nosecone, over mid-section (over propellant tanks), and around small section above fins. One steel tube or pipe on each side of rocket, along propellant section; one smaller diameter copper tube on one side. Steel nozzle and other interior components. Fabric parachute.”

Goddard is the “Father of Modern Rocketry.” Many of his developments were copied by German engineers as they developed the V2 rocket of World War II. And this led to America’s own post-War rocket developments, including the mighty Saturn V moon rocket.

This photograph, taken at the launch site, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, Harry F. Guggenheim, Dr. Goddard, Charles A. Lindbergh, Nils T. Ljungquist and Charles Mansur. (U.S. Air Force)
This photograph, taken at the launch site in New Mexico, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, machinist; Harry F. Guggenheim, philanthropist; Dr.Robert H. Goddard; Charles A. Lindbergh, aviator; Nils T. Ljungquist, machinist; and Charles Mansur, a welder. (U.S. Air Force)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. (NASM)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. It is constructed from parts of several A-series rockets which had been test flown. (NASM)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

16 March 1926

Robert Hutchins Goddard, Ph.D. (1882–1945) (NASM)

16 March 1926: At 2:30 in the afternoon, Robert Hutchings Goddard, Ph.D., a professor in physics at Clark University, launched the first successful liquid-fueled rocket from his Aunt Effie’s farm (known as “the Asa Ward Farm”) at Auburn, Massachussetts.

In his diary, Dr. Goddard wrote:

“March 16. Went to Auburn with S [Henry Sachs] in am. E [Esther Christine Kisk Goddard] and Mr. Roope [Percy M. Roope, Ph.D.] came out at 1 p.m. Tried rocket at 2:30. It rose 41 feet & went 184 feet in 2.5 secs., after the lower half of the nozzle burned off. . . .”

Robert H. Goddard, Ph.D., with Nell, the first liquid-fueled rocket, mounted on the launch stand at Auburn, Massachusetts, 16 March 1926. (Percy M. Roope, Ph.D.)

The following day, he described the rocket flight in greater detail:

“”The first flight with a rocket using liquid propellants was made yesterday at Aunt Effie’s farm in Auburn. The day was clear and comparatively quiet. The anemometer on the Physics lab was turning leisurely when Mr. Sachs and I left in the morning, and was turning as leisurely when we returned at 5:30 pm. Even though the release was pulled, the rocket did not rise at first, but the flame came out, and there was a steady roar. After a number of seconds it rose, slowly until it cleared the frame, and then at express train speed, curving over to the left, and striking the ice and snow, still going at a rapid rate. It looked almost magical as it rose, without any appreciably greater noise or flame, as if it said ‘I’ve been here long enough; I think I’ll be going somewhere else, if you don’t mind.’ Esther said that it looked like a fairy or an aesthetic dancer, as it started off. The sky was clear, for the most part, with large shadowy white clouds, but late in the afternoon there was a large pink cloud in the west, over which the sun shone. One of the surprising [the rest of this sentence is from the next page] things was the absence of smoke, the lack of very loud roar, and the smallness of the flame.”

Dr. Goddard’s diary entry for 17 March 1926. (Clark University Archives and Special Collections)
Goddard’s rocket, “Nell.”(Clark University Archives and Special Collections)

The rocket, called Nell ¹ and known as Goddard 1, was fueled by gasoline and liquid oxygen. It was 11 feet, 3 inches (3.429 meters) tall and weighed approximately 10.4 pounds (4.7 kilograms) when fueled. The engine produced an estimated 9 pounds (40 newtons) of thrust.

Dr. Robert H. Goddard with "Nell," a liquid-fueled rocket, in hi sworkshop at Clark University. (National Museum of the United States Air Force)
Dr. Robert H. Goddard with “Nell,” a liquid-fueled rocket, in his workshop at Clark University, Worcester, Massachussetts. (National Museum of the United States Air Force
Apollo 10 (AS-505) lifts off from Launch Complex 39B at the Kennedy Space Center, Cape Canaveral, Florida, 16:49:00 UTC, 18 May 1969. (NASA)
Just 43 years later, 16:49:00 UTC, 18 May 1969, a liquid-fueled multi-stage Saturn V rocket, Apollo 10 (AS-505) lifts off from Launch Complex 39B at the Kennedy Space Center, Cape Canaveral, Florida. (NASA)

¹ Nell was a reference to the title character, “Salvation Nell,” from a 1908 play by Edward Brewster Sheldon. The character was portrayed by a leading actress of the time, Minnie Maddern Fiske, née Maria Augusta Davey, and popularly known simply as “Mrs. Fiske.”

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather