Tag Archives: Prototype

28 October 1952

Douglas XA3D-1 Skywarrior, Bu. No. 125412. (U.S. Navy)
George R. Jansen, 1921–1991. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)

28 October 1952: The prototype Douglas XA3D-1 Skywarrior, Bu. No. 125412, made its first flight at Edwards Air Force Base, California. Douglas test pilot George R. Jansen was in the cockpit. The Skywarrior was a carrier-based, twin-engine, swept-wing strategic bomber, designed to carry a 12,000 pound (5,443 kilogram) bomb load. The prototype was equipped with two Westinghouse XJ40-WE-12 turbojet engines producing 7,000 pounds of thrust (31.138 kilonewtons), each.

Designed to be launched from an aircraft carrier, fly 2,000 miles (3,219 kilometers), deliver a 3.8 megaton Mark 15 thermonuclear bomb on target, then return to the carrier, the Skywarrior was a considerable challenge for its designers. It was operated by a three man crew: pilot, navigator/bombardier and gunner.

Douglas XA3D-1 Bu. No. 125412 during its first flight, 28 October 1952. (U.S. Navy))

The production A3D-1 was 74 feet, 5 inches (22.682 meters) long with a wingspan of 72 feet, 6 inches (22.098 meters) and overall height of 22 feet, 10 inches (6.960 meters). The shoulder-mounted wings were swept back at a 36° angle and the wings and vertical fin were hinged so that they could be folded for storage aboard the aircraft carrier. The bomber’s empty weight was 35,900 pounds (16,284 kilograms) and the maximum takeoff weight was 70,000 pounds (31,752 kilograms).

When the two prototypes’ Westinghouse JX40 engines proved to be underpowered, they were replaced with Pratt & Whitney J57-P-1 turbojets, rated at 9,000 pounds of thrust (40.034 kilonewtons). The J57 was a two-spool axial-flow turbojet which had a 16-stage compressor section and a 3-stage turbine. (Both had high- and low-pressure stages.) The engine was 15 feet, 3.5 inches (4.661 meters) long, 3 feet, 5.0 inches (1.041 meters) in diameter, and weighed 4,390 pounds (1,991 kilograms). Production models were equipped with the J57-P-6, rated at 9,700 pounds of thrust (43.148 kilonewtons).

Douglas XA3D-1 Bu. No. 125412. (U.S. Navy)

The A3D-1 had a cruise speed of 519 miles per hour (835 kilometers per hour) and maximum speed of 621 miles per hour (999 kilometers per hour) at 1,000 feet (305 meters). The combat ceiling was 40,500 feet (12,344 meters). It had a range of 2,100 miles (3,380 kilometers). The combat radius was 1,150 miles (1,851 kilometers).

The Skywarrior could carry 12,000 pounds (5,443 kilograms) of conventional or Special Weapons (MK 43 or MK 57 nuclear bombs) in its internal bomb bay. A remotely-operated turret in the tail was armed with two An-M3 20 mm cannon with 500 rounds per gun.

The first A3D-1 production aircraft were painted a glossy sea blue. This was soon changed to a flat light gray for the sides and upper surfaces with gloss white underneath. This provided better camouflage as well as thermal protection from nuclear blast.

A Douglas A3D-2 Skywarrior, Bu. No. 138974, redesignated A-3B after 1962, launches from the angled flight deck of a United States Navy aircraft carrier. (U.S. Navy)
A Douglas A3D-2 Skywarrior, Bu. No. 138974, (redesignated A-3B after 1962) launches from the angled flight deck of a United States Navy aircraft carrier. (U.S. Navy)

Douglas built 282 A3D Skywarriors between 1956 and 1961. They remained in service as late as 1991. The U.S. Air Force ordered 294 B-66 Destroyer medium bombers, which were developed from the A3D. The first XA3D-1, Bu. No. 125412, was used as a ground trainer after the test flight program was completed.

Major George R. Jansen, U.S. Army Air Forces. (U.S. Air Force)
Major George R. Jansen, U.S. Army Air Forces. (U.S. Air Force)

George R. Jansen was the Director of Flight Operations for the Douglas Aircraft Company. He had been a bomber pilot flying the B-24 Liberator during World War II. After one mission, his bomber, Margaret Ann, returned to base in England with more than 750 bullet and shrapnel holes, and one crewman dead and another wounded. He twice flew missions from North Africa against the refineries at Ploesti, Romania. At the age of 22, Jansen was a major in command of the 68th Bombardment Squadron (Heavy), 44th Bombardment Group (Heavy). He had been awarded three Distinguished Flying Crosses and five Air Medals.

After the war, George Jansen went to work for Douglas as a production test pilot. He graduated from the Air Force Test Pilot School at Edwards Air Force Base in 1952. He flew many of Douglas’s new prototype aircraft, and also flew the modified Boeing P2B-1S Superfortress mother ship to carry the D-558-II Skyrocket to altitude. He made many of the first flights for Douglas, both military and civil. He passed away at the age of 70 years.

A Douglas A3D-1 Skywarrior is launched from a steam catapult aboard USS Shangri-La (CVA-38) while a second is readied for launch. (U.S. Navy)
A Douglas A3D-1 Skywarrior is launched from a steam catapult aboard USS Shangri-La (CVA-38) while a second is readied for launch. (U.S. Navy)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

27 October 2015

Sikorsky's CH-53K King Stallion Engineering Development Model-1 hovers in ground effect, 27 October 2015. (Sikorsky)
Sikorsky’s CH-53K King Stallion Engineering Development Model-1 hovers in ground effect at West Palm Beach, Florida, 27 October 2015. (Sikorsky, a Lockheed Martin Company)

27 October 2015: The first flight of the Sikorsky CH-53K King Stallion Engineering Development Model–1, Bu. No. 169019, at West Palm Beach, Florida. In the cockpit was Stephen McCulley, Chief Experimental Test Pilot for Sikorsky. During the 30 minute flight, the new helicopter demonstrated sideward, rearward and forward flight while remaining in in-ground-effect hover.

Up to this point, the helicopter had completed about 200 hours of “turn-time,” or ground testing, with engines running..

Three more aircraft will join the test fleet for a planned 2,000 hour flight test program.

The CH-53K King Stallion test fleet. (Sikorsky, a Lockheed Martin Company)

The fuselage of the CH-53K King Stallion is 73 feet, 1.5 inches (22.289 meters) long and its width is 9 feet, 10 inches (2.997 meters). The maximum width, across the sponsons, is 17 feet, 6 inches (5.334 meters). The seven-bladed main rotor has a diameter of 79 feet (24.079 meters). The four-blade tail rotor is 20 feet (6.096 meters) in diameter. The tail rotor is tilted 20° to the left. With rotors turning, the helicopter has an overall length of 99 feet (30.175 meters), and height of 28 feet, 4.9 inches (8.659 meters). The helicopter’s maximum gross weight is 88,000 pounds (39,916 kilograms).

Power is supplied by three General Electric T408-GE-400 engines which produce 7,500 shaft horsepower, each. The engine has digital electronic controls. The T408 has a 6-stage compressor section (5 axial-flow stages, 1 centrifugal-flow stage) and – stage turbine section (2 high- and 3 low-pressure stages). The engine is 57.5 inches (1.461 meters) long and 27 inches (0.686 meters) in diameters.

At Sea Level with maximum continuous power, the CH-53K cruises at 158 knots (182 miles per hour/293 kilometers per hour). It can hover out of ground effect at Sea Level at its maximum gross weight. The helicopter’s service ceiling is 16,000 feet (4,877 meters).

The first production CH-53K was delivered to the U.S. Marine Corps on 16 May 2018, at West Palm Beach, Florida.

Sikorsky delivered the first of 200 CH-53K King Stallion Helicopters to the USMC from West Palm Beach, Florida, on May 16. Image courtesy of U.S. Marine Corps. (PRNewsfoto/Lockheed Martin)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

26 October 1940

North American Aviation NA-73X prototype, left front quarter view. (North American Aviation, Inc.)

26 October 1940: At Mines Field, Los Angeles, California (now, Los Angeles International Airport), free lance test pilot Vance Breese took the prototype North American Aviation NA-73X, civil registration NX19998, on a five-minute first flight. Later in the day, Breese flew the NA-73X another ten minutes. He would make six more test flights between 26 October and 13 November, totaling approximately 3 hours, 30 minutes of flight time.

With Great Britain at war with Nazi Germany, the Royal Air Force was the primary defender of the island nation. Airplane manufacturers were turning out Hawker Hurricanes and Supermarine Spitfires as rapidly as possible, but they were barely keeping up with combat losses. England needed more fighters. They had taken over an order for Curtiss-Wright Hawk 81-A1 fighters which had been built for France, but which had not been shipped by the time France surrendered. The RAF called these fighters the Tomahawk Mark I (P-40 Warhawk in U.S. service).

North American Aviation’s NA-73X fighter prototype, engine idling, with Vance Breese in the cockpit at Mines Field, Los Angeles, 26 October 1941. (North American Aviation Inc.)

The British Purchasing Commission asked North American Aviation in Los Angeles, California, to build additional Tomahawks under license from Curtiss-Wright. North American countered with a proposal to design a completely new and superior fighter around the P-40’s Allison V-12 engine, and begin production in no more time than it would take to get a P-40 production line up and running. The Purchasing Commission agreed, and with a letter of understanding, North American began work on the NA-73X on 1 May 1940. They were to produce 320 fighters before 30 September 1941, approximately 50 per month, at a total price of $14,746,964.35.

Vance Breese in the cockpit of the NA-73X, NX19998, at Mines Field, preparing for a test flight. (North American Aviation)

In a contract amendment dated 9 December 1940, the British Purchasing Commission directed that the NA-73 would be identified by the name, “Mustang.”

The prototype NA-73X, North American serial number 73-3097, was a single-seat, single-engine, low wing monoplane with retractable landing gear. It was primarily of metal construction, though the flight control surfaces were fabric covered. The airplane was designed for the maximum reduction in aerodynamic drag. The fuselage panels were precisely designed and very smooth. Flush riveting was used. The Mustang was the first airplane to use a laminar-flow wing. The coolant radiator with its intake and exhaust ducts was located behind and below the cockpit. As cooling air passed through the radiator, it was heated and expanded, so that as it exited, it actually produced some thrust.

The prototype was 32 feet, 2–5/8 inches (9.820 meters) long, with a wing span of 37 feet, 5/16 inch (11.286 meters). Empty weight of the NA-73X was 6,278 pounds (2,848 kilograms) and normal takeoff weight was 7,965 pounds (3,613 kilograms).

The NA-73X was powered by a liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F3R (V-1710-39) single overhead cam 60° V-12 engine, with a compression ratio of 6.65:1 and a single-stage, single-speed supercharger. This was a right-hand tractor engine (the V-1710 was built in both right-hand and left-hand configurations) which drove a 10 foot, 6 inch (3.200 meter) diameter, three-bladed, Curtiss Electric constant-speed propeller through a 2.00:1 gear reduction.

The V-1710-39 had a Normal Power rating of 880 horsepower at 2,600 r.p.m. at Sea Level; Take Off Power rating of 1,150 horsepower at 3,000 r.p.m. at Sea Level, with 44.5 inches of manifold pressure (1.51 Bar), 5 minute limit; and a War Emergency Power rating of 1,490 horsepower at 3,000 r.p.m., with 56 inches of manifold pressure (1.90 Bar). The V-1710-F3R was 3 feet, ¾ inches (0.934 meters) high, 2 feet, 5-9/32 inches (0.744 meters) wide and 7 feet, 1-5/8 inches (2.175 meters) long. It had a dry weight of 1,310 pounds (594 kilograms).

North American Aviation’s prototype fighter, NA-73X, NX19998, at Mines Field, Los Angeles, California. (North American Aviation)

The NA-73X had a maximum speed of 382 miles per hour (615 kilometers per hour) at 13,700 feet (4,176 meters). The service ceiling was 32,000 feet (9,754 meters). The fuel capacity was 180 gallons (681.37 liters), giving the airplane a range of 750 miles (1,207 kilometers).

NX19998 was substantially damaged on 20 November 1940 when North American’s Chief Test Pilot, Paul B. Balfour, unable to make it back to Mines Field after the Allison engine failed, made a forced landing in a plowed field just west of Lincoln Boulevard. The prototype flipped over and landed upside down. Sources differ as to the cause of the engine failure, with some citing carburetor icing and others suggesting that Balfour failed to switch fuel tanks and the engine stopped running due to fuel starvation. Balfour was replaced by Robert C. Chilton and NA-73X was rebuilt.

Robert C. Chilton flying the rebuilt NA-73X on an early familiarization flight. (North American Aviation)

Bob Chilton said that “. . . NA-73X was a clean-flying aircraft with no bad vices. It was quite pleasant in the air and handled very similar to later production articles.”

There was only one NA-73X prototype. Its status is not known. Chilton recalled, “. . . NA-73X was just pushed aside after it had been retired from its last flight. It probably ended up on the company’s junk pile, but I do not recall seeing it there.” The prototype may have been given to a local industrial trade school.

Vance Breese
Vance Breese (San Diego Air and Space Museum Archive)

Vance Breese was born 20 April 1904 at Keystone, Washington, He was the first of five children of Lee Humbert Breese, a machinist, and Anna E. Dixon Breese.

Breese founded the Breese Aircraft Company in 1926, based at San Francisco, California, and then, as the Breese-Wilde Corporation, moved to Oregon. The company produced the Breese-Wilde Model 5, a single-engine light airplane. Two of these, Aloha and Pabco Flyer, flew in the notorious 1927 Dole Air Race from Oakland, California, to Honolulu, Hawaii. Pabco Flyer crashed on takeoff when its landing gear collapsed. Aloha finished in second place.

Breese formed a partnership with Gerard Vultee in 1932, with the Airplane Development Corporation at Detroit Michigan. They produced the Vultee V-1A, an 8 passenger light transport. He was also involved in an express mail company, Air Express Corporation.

Maerican Airlines Vultee !A NC13768, designed by Gerard Vultee and Vance Breese.
American Airlines Vultee 1A NC13768, designed by Gerard Vultee and Vance Breese.

Vance Breese was well known as a test pilot, making a number of first flights and conducting flight tests for various airplane manufacturers. As a test pilot, Breese pioneered the use of recording equipment during flight testing. He used a Dictaphone to record his notes, and a cine camera to film the instruments during the flight.

Breese was married three times. He first married Miss Kathryn (“Kitty”) M. McConnell in 1922. They divorced. Later, Breese married Eleanor Louise Buckles at Los Angeles, California, 18 November 1946. They had a son, Vance Breese, Jr., who became a well-known motorcycle racer and land speed record holder. They divorced in 1967. Breese then married Mireille E. Demartelley (AKA Mireille E. Hunt), 13 July 1967, at Santa Barbara, California.

He died at Santa Monica, California, 26 June 1973, at the age of 69 years. He is an Honorary Fellow of the Society of Experimental Test Pilots.

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

25 October 1994: The “Dog Ship”

The prototype Bell Model 430, C-GBLL, in flight, circa 1994. (Bell Helicopter TEXTRON)

A “dog ship” is an aircraft retained by a manufacturer for engineering development testing.

25 October 1994: At Bell Helicopter Textron’s plant at Mirabel, Quebec, Canada, the prototype Bell Model 430, registered C-GBLL, made its first flight.

The Bell Model 430 (“Four-Thirty”) is a twin-engine intermediate-weight helicopter, operated by one or two pilots, and which can be configured to carry from 6 to 11 passengers. It has advanced avionics. The standard helicopter is equipped with skid landing gear, and retractable tricycle gear is optional. The 430 was the first helicopter to be certified for instrument flight with a single pilot, without a stability augmentation system. The aircraft is also certified for Category A operations, meaning that if one engine were to fail during takeoff, the helicopter could continue to fly with the remaining engine.

Bell 430 instrument panel with some optional equipment. (Bell Helicopter TEXTRON)

The 430 was developed from the preceding Model 230 (and the 230 from the 222). It was lengthened 1 foot, 6 inches (0.457 meters) and uses a four-bladed semi-rigid main rotor.  Instead of a mechanical rotor head of trunnions, bearings and hinges, the 430 has a “soft-in-plane” fiberglass rotor yoke that is flexible enough to allow the blades to flap, feather and lead/lag.

The Bell 430 is 50 feet, 0.6 inches (15.248 meters) long, with rotors turning. The fuselage is 44 feet, 1 inch (13.437 meters) long. Overall height 12 feet, 1.6 inches (3.697 meters). The span of the stub wings is 11 feet, 6.0 inches (3.454 meters). The fixed horizontal stabilizer has a spa of 11 feet, 5.9 inches (3.453 meters) and a -9° angle of incidence. The vertical fin is canted slightly to the right to unload the tail rotor during high speed flight.

The main rotor mast is tilted 5° forward and 1.15° to the left. The forward tilt helps to keep the passenger cabin level during forward flight, while the left tilt counteracts the translating tendency caused by tail rotor thrust while in a hover.

Bell 430 prototype at Mirabel, Quebec, Canada, December 1995. (Vertiflite)

The main rotor is 42 feet, 0 inches (12.802 meters) in diameter and rotates counter-clockwise as seen from above. (The advancing blade is on the right.) The rotor turns at 348 r.p.m., resulting in a blade tip speed of 765 feet per second (233 meters per second). The blades are of composite construction. They use an asymmetrical airfoil and have a chord of 1 foot, 2.2 inches (0.361 meters). The blades are pre-coned 2° 30′.

The tail rotor is mounted on the left side of the tail boom, with the rotor disc offset 1 foot, 9.5 inches (0.572 meters) to the left of the aircraft centerline. Seen from the helicopter’s left, the tail rotor turns clockwise (the advancing blade is below the axis of rotation). The tail rotor is 6 feet, 10.5 inches (2.098 meters) in diameter, with a chord of 10.0 inches (0.254 meters). The blades are constructed of a stainless steel spar, with a bonded stainless steel skin over an aluminum honeycomb. The tail rotor turns 1,881 r.p.m.

Three-view drawing of the Bell Model 430 with retractable tricycle landing gear. (Bell Helicopter TEXTRON)

In standard configuration, the wheel-equipped Model 430 has an empty weight of 5,364 pounds. Its maximum gross weight is 9,300 pounds (4,218 kilograms).

The 430 is powered by two Rolls-Royce Series IV M250 C40B FADEC turboshaft engines. (The engine was previously known as the Allison 250-C40B. Rolls-Royce acquired Allison in 1995). The engine has full digital electronic controls. The 250-C40B uses a single-stage centrifugal compressor, reverse-flow combustion chamber, and a 4-stage axial-flow turbine section (2-stage gas producer turbine, N1, and 2-stage power turbine, N2.) At 100% N1, the gas producer rotates at 51,000 r.p.m. and the power turbine turns 30,908 r.p.m. The output drive speed is 9,598 r.p.m.

The engines have a Maximum Continuous Power rating of 695 shaft horsepower, and 808 s.h.p. for takeoff (5-minute limit). If an engine fails, the remaining engine can be operated at 940 s.h.p. for 30 seconds; 880 s.h.p for 2 minutes; and 835 s.h.p. for 30 minutes.

At Sea Level, the Bell Model 430 has a cruise speed of 133 knots (153 miles per hour/246 kilometers per hour), and maximum cruise of 147 knots (169 miles per hour/272 kilometers per hour). VNE is 150 knots (173 miles per hour/278 kilometers per hour). The helicopter’s service ceiling is 20,000 feet (6,096 meters). At its maximum gross weight, the 430 can hover in ground effect (HIGE) at 10,400 feet (3,170 meters) and out of ground effect (HOGE) at 6,200 feet (1,890 meters).

The fuel capacity of the 430 is 187.5 U.S. gallons (708 liters). This gives the helicopter a range of 286 nautical miles (329 statute miles/530 kilometers). A 48 gallon (182 liter) auxiliary fuel tank can be installed in the baggage compartment. With skid landing gear, the fuel capacity is increased to 247 gallons (935 liters), increasing the range to 353 nautical miles (406 statute miles/654 kilometers).

The Bell Model 430 received its Transport Canada certification on 23 February 1996, with the first production aircraft delivered the following month. Production continued for 12 years. The final 430 was delivered in May 2008.

This helicopter is an early production Bell Model 222, sometimes unofficially called a “222A”. (Wikipedia)

C-GBLL was originally built as the sixth Model 222, serial number 47006, and registered by the Federal Aviation Administration as N2759D. The aircraft was used as the prototype of the Bell 222B, which upgraded the engines from the original 618-shaft horsepower Lycoming LTS-101-650C3 turboshaft engines to 680 s.h.p. LTS-101-750Cs. The diameter of the main rotor was increased from 40 feet to 42 feet.

In 1983, N2759D was next used as the prototype for the Model 222UT, which replaced the retractable tricycle landing gear with fixed skids constructed of tubular aluminum. This simplified the helicopter, decreased its empty weight and allowed for an increased fuel capacity. N2759D was transferred to Bell Helicopter Textron Canada at Mirabel. Its U.S. registration cancelled by the FAA on 17 October 1990, and it was re-registered C-GBLL by Transport Canada.

The skid-equipped Bell Model 222UT is often used as an emergency medical transport helicopter. This aircraft, operated by Mercy Air Service Inc., is standing by at Mohave Airport (MHV) in the high desert of southern California. (Unattributed)

Early problems with the Lycoming LTS-101 adversely affected sales of the Bell 222. Bell designed a new variant equipped with Allison 250-C30G engines. This helicopter was designated the Model 230. The first prototype, C-GEXP, with skid gear, made its first flight on 12 August 1991, followed by the second prototype—C-GBLL—on 3 October 1991.

Bell 230 prototype C-GBLL, minus main rotor and mast, and tail rotor, circa 1993. Compare the exhaust stacks to those of the 222UT in the image above. (Fiveprime)

The 430 prototype was given a new serial number, s/n 43901.

Bell 430 prototype C-GBLL, stripped, circa 2012. (Photograph © Pierre Gillard. Used with permission)
Bell 430 C-BCHD (s/n 43902) was the second prototype of the Model 430. This helicopter, previously registered C-GEXP, was built as a Bell 222UT, s/n 47503, before being converted to the first Model 230 prototype in 1991. (© Pierre Gillard Used with permission)

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

24 October 1953

Convair YF-102 52-7994 on Rogers Dry Lake, Edwards Air Force Base, California. (San Diego Air and Space Museum Archive)
Convair YF-102 52-7994 on Rogers Dry Lake, Edwards Air Force Base, California. (San Diego Air and Space Museum Archive)

24 October 1953: At Edwards Air Force Base, California, Richard Lowe Johnson, Chief Test Pilot for the Convair Division of the General Dynamics Corporation, took the first prototype YF-102 Delta Dagger, serial number 52-7994, for its first flight.

The YF-102 was a single-seat, single-engine, delta wing fighter designed as an all-weather, missile-armed, Mach 2 interceptor. It was developed from the earlier, experimental, Convair XF-92 Dart. The F-102 was planned for a Westinghouse XJ67-W-1 engine, but when that was not ready in time, a Pratt & Whitney J57-P-11 afterburning turbojet engine was substituted. The J57 was a two-spool, axial-flow engine with a 16-stage compressor section (9 low- and 7-high-pressure stages) and a 3-stage turbine section (1 high- and 2 low-pressure stages). The J57-P-11 was rated at 10,000 pounds of thrust (44.482 kilonewtons), and 16,000 pounds (71.172 kilonewtons) with afterburner.

The first prototype Convair YF-102 Delta Dagger, 52-7994, was completed at the Convair plant in San Diego, 2 October 1953. (U.S. Air Force)
The first prototype Convair YF-102 Delta Dagger, 52-7994, was completed at the Convair plant in San Diego, 2 October 1953. (Convair Division of General Dynamics)

The prototype had finished assembly at the Convair plant in San Diego, California, on 2 October 1953. It was then shipped by truck to Edwards Air Force Base in the high desert of southern California where final preparations and testing was carried out.

The National Advisory Committee for Aeronautics (NACA) had tested scale models of the YF-102 in the 8-foot HST wind tunnel at the Langley Memorial Aeronautical laboratory and found that significant shock waves were produced at near-sonic speeds. Surprisingly, shock waves were created at the trailing edge of the delta wing. The shock waves caused very high drag that would keep the aircraft from reaching Mach 1, even with the more powerful engine planned for production models.

Convair YF-102 with the original fuselage. (NASA)
Convair YF-102 53-1785 with the original fuselage, photographed 31 December 1954. (NASA)

The Republic YF-105 fighter bomber had similar problems, though it did pass the speed of sound. Both aircraft were significantly redesigned to incorporate the “Area Rule,” developed by NACA aerodynamicist Richard T. Whitcomb. Rather than considering the aerodynamics of the fuselage independently, the frontal area of the wings and tail surfaces had to be included to reduce drag. This produced the “wasp waist” or “Coke bottle” shape that the production models of these two fighters were known for.

Convair built two YF-102s before the design was changed, resulting in the YF-102A prototypes and the production F-102A Delta Dagger.

The first prototype Convair YF-102 Delta Dagger, 52-7994, on Rogers Dry Lake, October 1953. (U.S. Air Force)
The first prototype Convair YF-102 Delta Dagger, 52-7994, on Rogers Dry Lake, October 1953. (U.S. Air Force)

Several problems showed up on the YF-102’s first flight. Severe buffeting was encountered at high sub-sonic speed. As predicted by NACA, aerodynamic drag prevented the YF-102 from reaching Mach 1 in level flight. There were also problems with the landing gear, the fuel system, and the J57 engine did not produce the rated power.

The production F-102A was considerably larger than the YF-102. The fuselage was lengthened, the wing area and span were increased, and the vertical fin was taller. A more powerful J57-P-23 engine was used. These and other changes increased the F-102A’s gross weight by nearly 1,800 pounds (815 kilograms).

Convair YF-102 52-7994 parked on the dry lake bed, Edwards AFB, California. (U.S. Air Force)

On 2 November 1953, just nine days after the first flight, the Pratt & Whitney J57-P-11 engine flamed out during a test flight. Dick Johnson was unable to restart it and made a forced landing in the desert. The  YF-102 was severely damaged and Dick Johnson badly hurt. The flameout was traced to a problem with the the fuel control system. The prototype was written off.

Convair YF-102 Delta Dagger 52-7994. (U.S. Air Force)
Convair YF-102 Delta Dagger 52-7994 just before touchdown on Rogers Dry Lake. (U.S. Air Force)
Wreck o fConvair YF-102 52-994 near Edwards Air focre Base, 2 Novemnber 1953. (U.S. Air Force)
Wreck of Convair YF-102 52-7994 near Edwards Air Force Base, 2 November 1953. (U.S. Air Force)

Richard Lowe Johnson ¹ was born at Cooperstown, North Dakota, 21 September 1917. He was the eighth of nine children of Swedish immigrants, John N. Johnson, a farmer, and Elna Kristina Helgesten Johnson, a seamstress.

Dick Johnson attended Oregon State College at Corvallis, Oregon, as a member of the Class of 1943. He was a member of the Sigma Alpha Epsilon (ΣΑΕ) fraternity.

Dick Johnson was a pitcher for the college baseball team, and later, played for the Boston Red Sox “farm” (minor league) system.

On 18 June 1942, Johnson enlisted as a private in the Air Corps, United States Army. On 5 November, he was appointed an aviation cadet and assigned to flight training.

Aviation Cadet Johnson married Miss Juanita Blanche Carter, 17 April 1943, at Ocala, Florida. The civil ceremony was officiated by Judge D. R. Smith.

After completing flight training, on 1 October 1943, Richard L. Johnson was commissioned as a second lieutenant, Army of the United States (A.U.S.).

Lieutenant Johnson was assigned to the 66th Fighter Squadron, 57th Fighter Group, Twelfth Air Force, in North Africa, Corsica, and Italy, flying the Republic P-47 Thunderbolt. He was promoted to first lieutenant, A.U.S., 9 August 1944, and just over three months later, 26 November 1944, to the rank of captain, A.U.S. On 14 May 1945, Captain Johnson was promoted to the rank of major, A.U.S. (Major Johnson was assigned a permanent rank of first lieutenant, Air Corps, United States Army, on 5 July 1946, with a date of rank retroactive to 21 September 1945.)

Republic P-47D-25-RE Thunderbolt 42-26421, assigned to the 66th Fighter Squadron, 57th Fighter group, Twelfth Air Force. This airplane was purchased by the employees of Republic Aviation. (American Air Museum in Britain UPL 25505)

During World War II, Major Johnson flew 180 combat missions with the 66th Fighter Squadron. He is officially credited with one air-to-air victory, 1 July 1944. Johnson was awarded the Silver Star, the Distinguished Flying Cross with two oak leaf clusters (3 awards), and the Air Medal with twelve oak leaf clusters (thirteen awards).

In 1946, was assigned to the Air Materiel Command Engineering Test Pilot School at the Army Air Forces Technical Base, Dayton, Ohio (Wright-Patterson Air Force Base). He was the second U.S. Air Force pilot to be publicly acknowledged for breaking the “sound barrier.”

A few weeks after arriving at Dayton, Major Johnson met Miss Alvina Conway Huester, the daughter of an officer in the U.S. Navy. Dick Johnson and his wife Juanita were divorced 8 January 1947, and he married Miss Huester in a ceremony in Henry County, Indiana, 10 January 1947. They would have three children, Kristie, Lisa and Richard.

Richard L. Johnson waves from the cockpit of the record-setting North American Aviation F-86A-1-NA Sabre, 47-611.

Dick Johnson set a Fédération Aéronautique Internationale (FAI) World Record Speed Over a 3 Kilometer Course,² flying the sixth production North American Aviation F-86A-1-NA Sabre, serial number 47-611, at Muroc Air Force Base, California (renamed Edwards AFB in 1949).

During the Korean War, Major Johnson was sent to the war zone to supervise field installations of improvements to the F-86 Sabre. He was “caught” flying “unauthorized” combat missions and was sent home.

Convair Chief Test Pilot Richard Lowe Johnson. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

Lieutenant Colonel Johnson resigned from the Air Force in 1953 to become the Chief Test Pilot for the Convair Division of General Dynamics. He made the first flights of the YF-102 and the F-106A Delta Dart, 26 December 1956. He also made the first flight of the F-111 on 21 December 1964.

In 1955, Johnson was one of the six founding members of the Society of Experimental test Pilots.

Dick Johnson was Chief Engineering Test Pilot for the General Dynamics F-111 “Aardvark.” In 1967, the Society of Experimental Test Pilots awarded Johnson its Iven C. Kincheloe Award for his work on the F-111 program. In 1977, Dick Johnson, then the Director of Flight and Quality Assurance at General Dynamics, retired.

In 1998, Dick Johnson was inducted into the Aerospace Walk of Honor at Lancaster, California. His commemorative monument is located in front of the Lancaster Public Library on W. Lancaster Boulevard, just West of Cedar Avenue. ³

Lieutenant Colonel Richard Lowe Johnson, United States Air Force, (Retired), died 9 November 2002 at Fort Worth, Texas. He was buried at Arlington National Cemetery, Arlington, Virginia, on 7 January 2003.

Chief Test Pilot Dick Johnson in the cockpit of a Convair B-58A Hustler. (Courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

¹ Several sources spell Johnson’s middle name as “Loe.”

² FAI Record File Number 9866

³ Various Internet sources repeat the statement that “Richard Johnson has been honored with. . . the Thompson Trophy, Mackay Trophy, Flying Tiger Trophy, Federation Aeronautique Internationale Gold Medal and Golden Plate Award of the American Academy of Achievement. . . .” TDiA has checked the lists of awardees of each of the appropriate organizations and has not found any support for the statement.

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather