Tag Archives: Prototype

27 January 1939

Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum Archive)

27 January 1939: First Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, made the first flight of the prototype Lockheed XP-38 Lightning, serial number 37-457, at March Field, Riverside County, California.

This was a short flight. Immediately after takeoff, Kelsey felt severe vibrations in the airframe. Three of four flap support rods had failed, leaving the flaps unusable.

1st Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, 1937.

Returning to March Field, Kelsey landed at a very high speed with a 18° nose up angle. The tail dragged on the runway. Damage was minor and the problem was quickly solved.

Designed by an engineering team led by Hall L. Hibbard, which included the legendary Clarence L. “Kelly” Johnson, the XP-38 was a single-place, twin-engine fighter designed for very high speed and long range. It was an unusual configuration with the cockpit and armament in a center nacelle, with two longitudinal booms containing the engines and propellers, turbochargers, radiators and coolers. The Lightning was equipped with tricycle landing gear. The nose strut retracted into the center nacelle and the two main gear struts retracted into bays in the booms. To reduce drag, the sheet metal used butt joints with flush rivets.

The prototype had been built built at Lockheed’s factory in Burbank, California. On the night of 31 December 1938/1 January 1939, it was transported to March Field aboard a convoy of three trucks. Once there, the components were assembled by Lockheed technicians working under tight security.

Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Lockheed XP-38 Lightning 37-457

The XP-38 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 52 feet (15.850 meters) and overall height of 12 feet, 10 inches (3.952 meters). Its empty weight was 11,507 pounds (5,219.5 kilograms). The gross weight was 13,904 pounds (6,306.75 kilograms) and maximum takeoff weight was 15,416 pounds (6,992.6 kilograms).

The Lightning was the first production airplane to use the Harold Caminez-designed, liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710 single overhead cam 60° V-12 engines. When installed on the P-38, these engines rotated in opposite directions. The XP-38 used a pair of experimental C-series Allisons, with the port V-1710-C8 (V-1710-11) engine being a normal right-hand tractor configuration, while the starboard engine, the V-1710-C9 (V-1710-15), was a left-hand tractor. Through a 2:1 gear reduction, these engines drove the 11-foot (3.353 meters) diameter, three-bladed Curtiss Electric variable-pitch propellers inward to counteract the torque effect of the engines and propellers. (Viewed from the front of the airplane, the XP-38’s starboard propeller turned clockwise, the port propeller turned counter-clockwise. The direction of rotation was reversed in the YP-38 service test prototypes and production P-38 models.) The engines have long propeller gear drive sections to aid in streamlining aircraft, and are sometimes referred to as “long-nose Allisons.”

The V-1710-11 and -15 had a compression ratio of 6.65:1. They had a continuous power rating of 1,000 horsepower at 2,600 r.p.m. at Sea Level, and 1,150 horsepower at 2,950 r.p.m. for takeoff. The combination of a gear-driven supercharger and an exhaust-driven General Electric B-1 turbosupercharger allowed these engines to maintain their rated power levels to an altitude of 25,000 feet (7,620 meters).

The -11 and -15 were 7 feet, 10.46 inches (2.399 meters) long. The -11 was 3 feet, 6.59 inches (1.082 meters) high and 2 feet, 4.93 inches (0.7348 meters) wide. It weighed 1,300 pounds (589.7 kilograms). The -15 was 3 feet, 4.71 inches (1.034 meters) high, 2 feet, 4.94 inches (0.7351 meters) wide, and weighed 1,305 pounds (591.9 kilograms).

A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)
A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)

The XP-38 had a maximum speed of 413 miles per hour (664.66 kilometers per hour) at 20,000 feet (6,096 meters) and a service ceiling of 38,000 feet (11,582.4 meters).

The XP-38 was unarmed, but almost all production Lightnings carried a 20 mm auto cannon and four Browning .50-caliber machine guns grouped together in the nose. They could also carry bombs or rockets and jettisonable external fuel tanks.

Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)

The prototype XP-38 was damaged beyond repair when, on approach to Mitchel Field, New York, 11 February 1939, both engines failed to accelerate from idle due to carburetor icing. Unable to maintain altitude, Lieutenant Kelsey crash landed on a golf course and was unhurt.

Testing continued with thirteen YP-38A pre-production aircraft and was quickly placed in full production. The P-38 Lightning was one of the most successful combat aircraft of World War II. By the end of the war, Lockheed had built 10,037 Lightnings.

Lockheed test pilot Tony LeVier in the cockpit of P-38J-10-LO Lightning 42-68008. (Lockheed Martin)

© 2019, Bryan R. Swopes

24 January 1975

Aérospatiale SA 365 C Dauphin 2, F-WVKE. (Vertical Flight Society)

24 January 1975: First flight Aérospatiale SA 365 C Dauphin 2 prototype, F-WVKE, s/n 004. This prototype was built from a single engine SA 360 C Dauphin.

The SA 365 C is a single main rotor/fenestron twin-engine medium helicopter. It is operated by a single pilot seated in the right seat, and can carry a maximum of 13 passengers. The four-bladed articulated main rotor has a diameter of 11.68 meters (38.31 feet) and turns clockwise as seen from above. (The advancing blade is on the left.) A 0.89 meter (2.95 feet), 13-bladed fenestron provides anti-torque and yaw control.¹ In 1977, a Star Flex rigid rotor hub replaced the articulated main rotor.

The fuselage is 10.98 meters (36.02 feet) long, 3.17 meters (10.40 feet) wide and 3.27 meters (10.72 feet) high. In the original configuration, the Dauphin 2 had fixed wheeled landing gear. The second prototype was used to experiment with retractable tricycle gear, which was adopted with the SA 365 N.

Aérospatiale SA 365 C Dauphin 2, F-WVKE. (Vertical Flight Society)

The SA 365 C was powered by two Turboméca Arriel 1A turboshaft engines. These had a maximum continuous power rating of 430 kW (577 h.p.) @ 50,764 r.p.m.; 466 kW (625 h.p.) for take off (5-minute limit) @ 52,007 r.p.m./or one engine inoperative (30-minute limit); and 486 kW (652 h.p.) @ 52,680 r.p.m., one engine inoperative,  2½-minute limit.

The main rotor turns 350 r.p.m. (+/- 10) in normal operation. The minimum transient speed to 285 r.p.m., is allowed in case of engine failure, and 320–420 r.p.m. during autorotation.

The helicopter’s maximum mass is 3,400 kilograms (7,496 pounds, maximum gross weight). Its maximum speed (VNE)  is 315 kilometers per hour (170 knots), and maximum operating altitude, 4,572 meters (15,000 feet). Fuel capacity is 640 liters (3 liters are unusable).

Fifty SA 365 C and C1 helicopters were built before being replaced by the SA 365 N Dauphin.

¹ The ducted fenestron is more effective than a conventional tail rotor, provides less drag in forward flight, and is safer when operating near the ground.

© 2022, Bryan R. Swopes

14 January 1953

Convair XF2Y-1 Sea Dart Bu. No. 137634 during high-speed taxi on San Diego Bay (National Naval Aviation Museum)

14 January 1953: During a high-speed taxi test on San Diego Bay, Convair Chief Test Pilot Ellis Dent (“Sam”) Shannon inadvertently made the first flight of the prototype XF2Y-1 Sea Dart, Bu. No. 137634. The airplane flew approximately 1,000 feet (305 meters) across the bay.

Sam Shannon with the Convair XF2Y-1 Sea Dart. (Image courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

The Sea Dart was a prototype single-seat, twin-engine, delta-winged fighter designed and built by the Convair Division of General Dynamics Corporation at San Diego, California. It was equipped with retractable skis in place of ordinary landing gear to allow it to take off and land on water, snow or sand.

The XF2Y-1 was 52 feet, 7 inches (16.027 meters) long with a wingspan of  33 feet, 8 inches (10.262 meters) and height of 16 feet, 2 inches (4.928 meters) with the skis retracted. The airplane had an empty weight of 12,625 pounds (5,727 kilograms) and maximum takeoff weight of 21,500 pounds (9,752 kilograms).

Convair XF2Y-1 Sea Dart Bu. No. 137634 in flight over San Diego, California. (National Naval Aviation Museum)

The prototype XF2Y-1 was powered by two Westinghouse J34-WE-32 single-shaft axial-flow turbojet engines. The engine used an 11-stage compressor and 2-stage turbine. It was rated at 3,370 pounds (14.99 kilonewtons) of thrust, and 4,900 pounds (21.80 kilonewtons) with afterburner. The J34-WE-32 was 15 feet, 4.0 inches (4.674 meters) long, 2 feet, 1.6 inches (0.650 meters) in diameter, and weighed 1,698 pounds (770.2 kilograms).

The YF2Y-1 service test prototypes that followed were powered by Westinghouse XJ46-WE-2 engines. The J46 was also a single-shaft axial-flow turbojet, but had a 12-stage compressor and 2-stage turbine. These were rated at 4,080 pounds of thrust  (18.15 kilonewtons), and 6,100 pounds (27.13 kilonewtons) with afterburner. The J46-WE-2 was 15 feet, 11.7 inches (4.869 meters) long, 2 feet, 5.0 inches (0.737 meters) in diameter and weighed 1,863 pounds (845 kilograms).

The YF2Y-1 service test aircraft had a maximum speed of 695 miles per hour (1,118 kilometers per hour) at 8,000 feet (2,438 meters), and 825 miles per hour (1,328 kilometers per hour)—Mach 1.25— at 36,000 feet (10,973 meters). The service ceiling was estimated at 54,800 feet (16,073 meters), and the range was 513 miles (826 kilometers).

There was one XF2Y-1 and four YF2Y-1 aircraft built, but only two of the service test aircraft ever flew. The XF2Y-1 prototype is in storage at the Smithsonian Institution National Air and Space Museum’s restoration facility. One YF2Y-1, Bu No. 135763, is displayed at the San Diego Air and Space Museum, and another, Bu. No. 135764, is in the collection of the Harold F. Pitcairn Wings of Freedom Aviation Museum at Horsham, Pennsylvania, about 30 minutes north of Philadelphia.

Convair XF2Y-1 Sea Dart Bu. No. 137634 taxis to the seaplane ramp at the north end of San Diego Bay. (National Naval Aviation Museum)

Ellis Dent Shannon was born at Andalusia, Alabama, 7 February 1908. He was the third of five children of John William and Lucy Ellen Barnes Shannon.

He was commissioned as a second lieutenant the Alabama National Guard (Troop C, 55th Machine Gun Squadron, Cavalry) 21 May 1926. He transferred to the Air Corps, United States Army, in 1929. In 1930, he was stationed at Brooks Army Airfield, Texas.

Lieutenant Ellis Dent Shannon, Air Corps, United States Army

In 1932 Shannon was was assigned as a flight instructor and an aviation advisor to the government of China.

On 24 December 1932, Shannon married Miss Martha Elizabeth Reid at Shanghai, China. They had son, Ellis Reid Shannon, born at Shanghai, 24 August 1934, and a daughter, Ann N. Shannon, born at Baltimore, Maryland, in 1940.

Shannon and his family returned to the United States in 1935 aboard SS Bremen, arriving at New York.

He was employed by the Glenn L. Martin Co., Baltimore, Maryland, in 1936 as a test and demonstration pilot. He traveled throughout Latin America, demonstrating the company’s aircraft. As a test pilot, he flew the Martin Model 187 Baltimore, the B-26 Marauder, PBM Mariner and the Martin JRM Mars.

In February 1943, Shannon started working as a Chief of Flight Research for the Consolidated Aircraft Company at San Diego, California. While there, made the first flights of the Consolidated XB-24K, a variant of the Liberator bomber with a single vertical tail fin; the XR2Y-1, a prototype commercial airliner based on the B-24 Liberator bomber; the XB-46 jet-powered medium bomber; the XP5Y-1 Tradewind, a large flying boat powered by four-turboprop-engines; the Convair 340 Metropolitan airliner; and the XF-92A, a delta-winged proof-of-concept prototype. Shannon also participated in the flight test program of the YF-102A Delta Dart.

After retiring from Convair in 1956, Ellis and Martha Shannon remained in the San Diego area.

Ellis Dent Shannon died at San Diego, California, 8 April 1982 at the age of 74 years.

Ellis Dent Shannon, Convair Chief Test Pilot, circa 1953. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

© 2018 Bryan R. Swopes

14 January 1950

This is the second Mikoyan Gurevich I 330 prototype, SI 02.
This is the second Mikoyan Gurevich I 330 prototype, SI 02.

14 January 1950: The Mikoyan Gurevich prototype fighter I 330 SI made its first flight with test pilot Ivan Ivashchenko. It would be developed into the MiG 17.

The MiG 17 was an improved version of the earlier MiG 15. It was a single-seat, single engine fighter armed with cannon, and capable of high subsonic and transonic speed.

Mikoyan Gurevich MiG 17.
Mikoyan Gurevich MiG 17.

The prototype’s wings were very thin and this allowed them to flex. The aircraft suffered from “aileron reversal,” in that the forces created by applying aileron to roll the aircraft about its longitudinal axis were sufficient to bend the wings and that caused the airplane to roll in the opposite direction.

The first prototype I 330 SI developed “flutter” while on a test flight, 17 March 1950. This was a common problem during the era, as designers and engineers learned how to build an airplane that could smoothly transition through the “sound barrier.” The rapidly changing aerodynamic forces caused the structure to fail and the horizontal tail surfaces were torn off. The prototype went into an unrecoverable spin. Test pilot Ivashchenko was killed.

Two more prototypes, SI 02 and SI 03, were built. The aircraft was approved for production in 1951.

More than 10,000 MiG 17 fighters were built in the Soviet Union, Poland and China. The type remains in service with North Korea.

A MiG 17 in flight.
A MiG 17 in flight.
Иван Т. Иващенко летчик-испытатель
Иван Т. Иващенко летчик-испытатель

Ива́н Тимофе́евич Ива́щенко (Ivan T. Ivashchenko) was born at Ust-Labinsk, Krasnodar Krai, Russia, 16 October 1905. He served in the Red Army from 1927 to 1930. He graduated from the Kuban State University in 1932.

Ivashchenko was trained as a pilot at the Lugansk Military Aviation School at Voroshilovgrad, and a year later graduated from the Kachin Military Aviation College at Volgograd.

In 1939, he fought in The Winter War. During the Great Patriotic War, Ivan Ivashchenko flew with a fighter squadron in the defense of Moscow.

From 1940 to 1945, Ivan Ivashchenko was a test pilot. He trained at the M.M. Gromov Flight Research Institute at Zhokovsky, southeast of Moscow, in 1941. He was assigned to Aircraft Factory No. 18 at Kuibyshev (Samara) from 1941 to 1943. Ivashchenko flew the Ilyushin Il-2 Sturmovik fighter bomber extensively. From 1943 to 1945 he was a test pilot for Lavochkin OKB at Factory 301 in Khimki, northwest of Moscow.

In 1945 Ivashchenko was reassigned to OKB Mikoyan, where he worked on the development of the MiG 15 and MiG 17 fighters. He participated in testing ejection seat systems and in supersonic flight.

Ivan T. Ivashchenko was a Hero of the Soviet Union, and was awarded the Order of Lenin, Order of the Red Banner (two awards) and Order of the Patriotic War. Killed in the MiG 17 crash at the age of 44 years, he was buried at the Novodevichy Cemetery in Moscow.

© 2017, Bryan R. Swopes

14 January 1942

Les Morris at the controls of the Vought-Sikorsky VS-316A (XR-4, serial number 41-18874) on its first flight at Stratford, Connecticut, 13 January 1942. (SikorskyHistorical Archives)
Les Morris at the controls of the Vought-Sikorsky VS-316A (XR-4, serial number 41-18874) on its first flight at Stratford, Connecticut, 14 January 1942. (Sikorsky Historical Archives)

14 January 1942: Chief Test Pilot Charles Lester (“Les”) Morris (1908–1991) made the first flight of the Vought-Sikorsky VS-316A at Stratford, Connecticut. The first flight lasted approximately 3 minutes, and by the end of the day, Morris had made 6 flights totaling 25 minutes duration.

“One-half left front close-up head-and-shoulders view of test pilot Charles L. “Les” Morris posed seated in the cockpit of the Sikorsky VS-300 helicopter (r/n NX28996), March 29, 1943.” (Hans Groenhoff Photographic Collection, Smithsonian Institution National Air and Space Museum NASM-HGC-1408)

The VS-316A (which was designated XR-4 by the U.S. Army Air Corps and assigned serial number 41-18874), established the single main rotor/anti-torque tail rotor configuration. It was a two-place helicopter with side-by-side seating and dual flight controls.

The fabric-covered three-blade main rotor was 38 feet (11.582 meters) in diameter and turned counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right.) The tail rotor was mounted to the aft end of the tail boom in a tractor configuration, and rotated counter-clockwise when seen from the helicopter’s right side.

The VS-316A was 33 feet, 11.5 inches (10.351 meters) long and 12 feet, 5 inches (3.785 meters) high. It weighed 2,010 pounds (911.7 kilograms) empty and the maximum gross weight was 2,540 pounds (1,152.1 kilograms).

The original engine installed in the VS-316A was an air-cooled, normally-aspirated, 499.805-cubic-inch-displacement (8.190 liter) Warner Aircraft Corporation Scarab SS-50 seven-cylinder radial  engine with a compression ratio of 5.55:1. The SS-50 was a direct-drive engine, with a maximum continuous power rating of 109 horsepower at 1,865 r.p.m., and 145 horsepower at 2,050 r.p.m. at Sea Level for takeoff. 73-octane gasoline was required. The SS50 was 2 feet, 5 inches (0.737 meters) long, 3 feet, 0-9/16 inches (0.929 meters) in diameter and weighed 306 pounds (139 kilograms).

gor Ivanovich Sikorsky and Charles Lester Morris with the XR-4 at Wright Field, Ohio, May 1942. (Sikorsky Historical Archives)
Orville Wright and Igor Ivanovich Sikorsky with the XR-4 at Wright Field, Ohio, May 1942. (Sikorsky Historical Archives)

Numerous modifications were made, including lengthening the main rotor blades, covering them with metal, and upgrading the engine to a 200 horsepower Warner R-550-1 Super Scarab. The XR-4 was redesignated XR-4C. This would be the world’s first production helicopter. It is at the Steven F. Udvar-Hazy Center of the Smithsonian National Air and Space Museum.

Sikorsky XR-4C 41-18874 at the National Air and Space Museum. (NASM)
Sikorsky XR-4C 41-18874 at the National Air and Space Museum. (NASM)

© 2019, Bryan R. Swopes