Tag Archives: Prototype

21 September 1964

North American Aviation XB70A-1-NA 62-001 takes off for the first time, 21 September 1964. (U.S. Air Force)
North American Aviation XB70A-1-NA 62-0001 takes off for the first time, 21 September 1964. (U.S. Air Force)

21 September 1964: The first prototype North American Aviation XB-70A-1-NA Valkyrie, serial number 62-0001, flown by Chief Test Pilot Alvin S. White and Colonel Joseph F. Cotton, U.S. Air Force, made its first flight from Air Force Plant 42, Palmdale, California, to Edwards Air Force Base.

Originally a prototype Mach 3 strategic bomber, 62-0001 (also known as AV-1) and it’s sister ship, XB-70A-2-NA, 62-0207, (AV-2), were built and used by the Air Force and NASA as high-speed research aircraft. The third Valkyrie, XB-70B-NA 62-0208 (AV-3), was never completed.

Major Joseph F. Cotton, USAF, and Alvin S. White, North American Aviation, with the XB-70A Valkyrie. (Autographed photograph courtesy of Neil Corbett, TEST & RESEARCH PILOTS, FLIGHT TEST ENGINEERS)
Colonel Joseph F. Cotton, USAF, and Alvin S. White, North American Aviation, with an XB-70A Valkyrie. (Autographed photograph courtesy of Neil Corbett, TEST & RESEARCH PILOTS, FLIGHT TEST ENGINEERS)

The B-70 was designed as a high-altitude Mach 3 strategic bomber armed with thermonuclear bombs. The XB-70A is 196 feet, 6 inches (59.893 meters) long with a wingspan of 105 feet (32.004 meters) and an overall height of 30 feet, 8 inches (9.347 meters) . It weighs 231,215 pounds (104,877 kilograms) empty and has a maximum takeoff weight of 534,792 pounds (242,578 kilograms).

The XB-70A was powered by six General Electric YJ93-GE-3 single-spool, axial-flow turbojet engines, which used an 11-stage compressor and two-stage turbine. The engine required a special heat-resistant JP-6 fuel, and was rated at 22,000 pounds of thrust (97.86 kilonewtons), or 31,000 pounds (137.90 kilonewtons) with afterburner. The YJ93-GE-3 was 19 feet, 7.0 inches (5.969 meters) long, 4 feet, 7.0 inches (1.397 meters) in diameter, and weighed 5,200 pounds 2,359 kilograms).

A Boeing B-52 Stratofortress flies formation with North American Aviation XB-70A Valkyrie 62-0001, approaching the runway at Edwards Air Force Base, California. (U.S. Air Force)

The XB-70A had a maximum speed of Mach 3.1 (2,056 miles per hour, or 3,309 kilometers per hour). At 35,000 feet (10,668 meters), it could reach Mach 1.90 (1,254 miles per hour, or 2,018 kilometers per hour), and at its service ceiling of 75,550 feet (23,012 meters), it had a maximum speed of Mach 3.00 (1,982 miles per hour, or 3,190 kilometers per hour). The planned combat range for the production  bomber was 3,419 miles (5,502 kilometers) with a maximum range of 4,290 miles (6,904 kilometers).

North American Aviation XB-70A Valkyrie 62-0001 made 83 flights with a total of 160 hours, 16 minutes flight time. 62-0001 is on display at the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.

North American Aviation XB-70A Valkyrie 62-0001 lands at Edwards Air Force Base at the end of its first flight, 21 September 1964. (U.S. Air Force)
North American Aviation XB-70A-1-NA Valkyrie 62-0001 just before landing at Runway 4 Right, Edwards Air Force Base, ending of its first flight, 21 September 1964. A Piasecki HH-21B rescue helicopter hovers over the adjacent taxiway. (U.S. Air Force)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

21 September 1961

Boeing Vertol YCH-1B 59-04984, the number three prototype. (U.S. Army)

21 September 1961: Boeing Vertol YCH-1B, serial number 59-04983, a twin-turboshaft, tandem-rotor helicopter flown by test pilot Leonard La Vasson, made its first flight at Morton Grove, Pennsylvania. This aircraft was the number two prototype of the U.S. Army’s heavy lift transport, the CH-47 Chinook, which is still in production 55 years later.

The YCH-1B fuselage was 51 feet (15.545 meters) long. The counter-rotating three-bladed rotors had a diameter of 59 feet, 1 inch (18.009 meters), each.

The prototypes were powered by two Lycoming LTC4B-3 (T55-L-5) turboshaft engines. These were free-turbine engines using a 7-stage axial-flow, 1-stage centrifugal-flow compressor with a single-stage high-pressure compressor turbine and two-stage low pressure power turbine. The T55-L-5 was rated at 1,870 shaft horsepower at 14,430 r.p.m. N2. It was 3 feet, 8.1 inches (1.120 meters) long and weighed 560 pounds (254 kilograms).

The helicopter had a maximum speed of 186 miles per hour (299 kilometers per hour). It was redesignated YCH-47A in 1962.

The 100th Boeing CH-47F Chinook was delivered to the United States Army in August 2013. (Boeing)
The 100th Boeing CH-47F Chinook was delivered to the United States Army during August 2013. (Boeing)

The Chinook remains in production as the CH-47F, and is used by the military services of several nations.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

21 September 1942

Boeing XB-29 takes off from Boeing Field, Seattle, Washington. (Boeing)
A Boeing XB-29 takes off from Boeing Field, Seattle, Washington. (Boeing)
Edmund T. ("Eddie") Allen
Edmund T. (“Eddie”) Allen

21 September 1942: At Boeing Field, Seattle, Washington, the Boeing Model 345, the first of three XB-29 prototypes, Air Corps serial number 41-002, took off on its first flight.

Edmund T. “Eddie” Allen, Director of Aerodynamics and Flight Research, was in command, with Al Reed, Chief of Flight Test and Chief Test Pilot, as co-pilot. They climbed to 6,000 feet (1,829 meters) and began testing the XB-29’s stability and control, control power and response, and stall characteristics.

The flight was uneventful. Landing after 1 hour, 15 minutes, Allen is supposed to have said, “She flew!”

The XB-29 was 98 feet, 2 inches (29.921 meters) long with a wing span of 141 feet, 3 inches (43.053 meters), and 27 feet, 9 inches (8.458 meters) high to the top of its vertical fin. The prototype bomber had a gross weight of 105,000 pounds (47,627 kilograms).

Boeing XB-29-BO, 41-002, the first XB-29 built. (U.S. Air Force)
Boeing XB-29-BO, 41-002, the first of three prototypes. (U.S. Air Force)

The prototype bomber was powered by four air-cooled, supercharged and fuel-injected 3,347.662-cubic-inch-displacement (54.858 liter) Wright Aeronautical Division Duplex-Cyclone 670C18H1 (R-3350-13) twin-row 18-cylinder radial engines with a compression ratio of 6.85:1. The R-3350-13 was rated at 2,000 horsepower at 2,400 r.p.m., and 2,200 horsepower at 2,800 r.p.m. for takeoff, burning 100-octane gasoline. These engines drove 17-foot-diameter (5.182 meters) three-bladed Hamilton Standard constant-speed propellers through a gear reduction of 0.35:1. The R-3350-13 was 76.26 inches (1.937 meters) long, 55.78 inches (1.417 meters) in diameter, and weighed 2,668 pounds (1,210 kilograms). Wright built 50 of these engines.

Boeing XB-29 Superfortress 41-18335. This is the third prototype. (Boeing)

The XB-29 had a maximum speed of 368 miles per hour (592 kilometers per hour) and cruised at 255 miles per hour (410 kilometers per hour). Its service ceiling was 32,100 feet (9,784 meters).

The airplane was designed to carry 20,000 pounds (9,072 kilograms) of bombs. Though the prototypes were unarmed, the production B-29s were defended by 10 Browning AN-M2 .50-caliber machine guns in four remotely-operated power turrets, with 2 more .50-caliber machine guns and a single AN-M2 20mm autocannon in the tail.

Boeing B-29A-30-BN Superfortress 42-94106, circa 1945. (U.S. Air Force)
Boeing B-29A-30-BN Superfortress 42-94106, circa 1945. (U.S. Air Force)

The B-29 Superfortress was the most technologically advanced—and complex—aircraft of the War. It required the manufacturing capabilities of the entire nation to produce. Over 1,400,000 engineering man-hours had been required to design the prototypes. It was manufactured by Boeing at Seattle and Renton, Washington, and at Wichita, Kansas; by the Glenn L. Martin Company at Omaha, Nebraska; and by Bell Aircraft Corporation, Marietta, Georgia. There were three XB-29 prototypes, 14 YB-29 pre-production test aircraft, 2,513 B-29, 1,119 B-29A, and 311 B-29B Superfortress aircraft. The bomber served during World War II and the Korean War and continued in active U.S. service until 1960.

The first prototype, 41-002, was scrapped in 1948.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 September 1958

Avro Vulcan VX770.
The first of two prototypes, Avro Type 698 VX770. (BAE Systems)

20 September 1958: The first prototype Avro Vulcan strategic bomber, VX770, piloted by Rolls-Royce test pilot Keith R. Sturt, was on a test flight from the Rolls-Royce Flight Test Establishment, RAF Hucknall, when it diverted to make a scheduled fly-past for an air show being held at RAF Syerstone in Nottinghamshire. Also aboard were Co-Pilot Ronald W. Ward of Fairey Aviation; Rolls-Royce Flight Engineer William E. Howkins; and Navigator, Flight Lieutenant Raymond M. (“Polly”) Parrott, Royal Air Force.

VX770 approched RAF Syerstone at 12:57 p.m. (GMT) and flew east along Runway 07-25 at about 250 feet (76 meters). As the Vulcan passed the control tower at an estimated speed of 350 knots, it began a right turn.

Seen from below, VX770 shows the full delta wing of the prototype. Production aircraft used a modified wing with curved leading edges in order to delay compressibility effects at high speeds. (Unattributed)
Seen from below, VX770 shows the full delta wing of the prototypes. Production aircraft used a modified wing with curved leading edges in order to delay compressibility effects at high speeds. (Unattributed)

Witnesses saw a “kink” form in the leading edge of the Vulcan’s right wing, which then began to disintegrate from the leading edge aft. Wing surface panels could be seen being stripped off before the wing spar failed completely. Clouds of fuel from ruptured tanks trailed as the bomber rolled to the left. The top of the vertical fin came off, the nose pitched upward toward vertical, then straight down, and with both wings on fire, the airplane crashed near the east end of the runway.

All four crew members were killed as were three RAF fire/rescue personnel on the ground. Several others were injured.

The right wing of Avro Vulcan VX770 disintegrates.
The right wing of Avro Vulcan VX770 disintegrates. (© Mary Evans/The National Archives, London, England)
Clouds of vaporized fuel trail the doomed bomber.
Clouds of vaporized fuel trail the doomed bomber. (Unattributed)
Vulcan VX770 crashed at the east end of Runway 07-25.
Vulcan VX770 crashed at the east end of Runway 07-25. Debris spread over 1,400 feet (427 meters). (MEV-10473694 © Mary Evans/The National Archives, London, England)

A short video clip of the fly-by and crash can be seen on You Tube:

The cause of the Vulcan’s wing failure was not determined. Metal fatigue was suspected. The airplane had been used in flight testing for six years and it is possible that it’s design limits may have been exceeded. There was also speculation that vibrations from the new Rolls-Royce Conway “bypass turbojet” engine, which is now called a turbofan, may have weakened the wing.

According to the investigative report, Keith Sturt (b. 20 April 1929) was considered to be an “above average” and “capable and careful” pilot. He had accumulated 1,644 hours of flight over six years. He had flown VX770 for 91 hours, 40 minutes. Sturt was a former Flight Lieutenant in the Royal Air Force, having been inducted into the service in 1945.

VX770 was the first of two Type 698 prototypes built by A.V. Roe & Co., Ltd., at Woodford, Cheshire. It made its first flight 30 August 1951 with Chief Test Pilot R.J. “Roly” Falk. Originally equipped with Rolls-Royce Avon R.A.3 turbojet engines, these were soon replaced with more powerful Armstrong Siddely Sapphire A.S.Sa.6 engines. During modification in 1953, fuel cells were added to the wings. As production airplanes were built with Bristol Olympus Mk.102 engines, VX770 was modified accordingly. During its final flight, Rolls-Royce Conway RCo.10 turbofan engines were installed.

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 September 1943

Geoffrey de Havilland, Jr., exits the cockpit of one of the company's jet aircraft. (Photograph Courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Geoffrey de Havilland, Jr., exits the cockpit of one of the company’s jet aircraft. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

20 September 1943: Geoffrey Raoul de Havilland, Jr., chief test pilot of the de Havilland Aircraft Co., Ltd., made the first flight in the prototype DH.100, LZ548/G, at Hatfield, Hertfordshire. (The “/G” in the identification indicated that the aircraft was to be guarded at all times.) Assigned the code name Spider Crab,  the production DH.100 would be better known as the de Havilland Vampire.

The flight lasted approximately 30 minutes and the airplane exceeded 400 miles per hour (644 kilometers per hour). De Havilland reported that the prototype was trimmed with the left wing down, had overly sensitive ailerons and demonstrated instability in yaw with rudder applications.

This oscillation in the yaw axis—called “snaking”—was determined to be a result of the overly effective vertical fins. After wind tunnel and flight testing, it was decided to reduce the fins’ area, resulting in the flat top configuration seen in bottom photograph.

Right front view of the first prototype de Havilland DH.100, LZ548/G.
Right front view of the first prototype de Havilland DH.100, LZ548/G, prior to its first flight. The letter “P” in a circle next to the RAF insignia identifies the airplane as a prototype. The “/G” in the identification number indicates that a guard is required at all times. (De Havilland Aircraft Co., Ltd.)

The DH.100 was a single-seat, single-engine fighter powered by a turbojet engine. The twin tail boom configuration of the airplane was intended to allow a short exhaust tract for the engine, reducing power loss in the early jet engines available at the time.

Right side view of the de Havilland DH.100 Spider Crab LZ548/G.
Right side view of the de Havilland DH.100 Spider Crab LZ548/G.

LZ548/G was originally powered by a Halford H.1 turbojet which produced 2,300 pounds of thrust (10.231 kilonewtons) at 9,300 r.p.m. This engine was produced by de Havilland and named Goblin.

av_gb_4603_jet-history_goblin_p080_w     The Goblin is a linear descendant of the early Whittle units. It comprises a single-sided centrifugal compressor delivering air to sixteen combustion chambers grouped symmetrically around the axis of the unit and leading to the nozzle of the single-stage axial turbine which drives the compressor. Compressor impeller and turbine rotor are coupled by a tubular shaft to form a single rotating assembly which is mounted on only two ball bearings. The maximum diameters of the engine, around the compressor casing, is 50in., [1.27 meters] and with a jet pipe of minimum length fitted the overall length is about 8ft. [2.438 meters] Equipped with a jet pipe and all the necessary engine auxiliaries the dry weight of the complete unit is 1,500 lb. [680 kilograms] Fuel consumption is at the rate of 1.23 lb. / hr. per lb. thrust.

FLIGHT and AIRCRAFT ENGINEER, No. 1923. Vol. XLVIII. Thursday, 1 November 1945 at Page 472, Column 2

The Vampire entered service with the Royal Air Force in 1945 and remained a front-line fighter until 1953. 3,268 DH.100s were built.

Right rear quarter view of the prototype de Havilland DH.100, LZ548/G.
Right rear quarter view of the prototype de Havilland DH.100, LZ548/G. In this photograph, the airplane’s vertical fins have been squared off. This would be a feature of the production Vampire F.1.

The first of the three prototype Vampires, LZ548, crashed after takeoff from Hatfield, 23 July 1945, due to a fuel pump failure. Geoffrey Pike, the pilot, was not injured.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather