Tag Archives: Airship

5 October 1907

Nulli Secundus (Cale & Polden Ltd., Aldershot)
Nulli Secundus (Gale & Polden Printers, Aldershot)

5 October 1907: The British Army Dirigible No 1, Nulli Secundus, flown by Colonel John E. Capper, Royal Engineers, Superintendent of the Royal Balloon Factory, and Samuel Frederick Cody, made a flight from the Balloon Factory at Farnborough to London. After circling St. Paul’s Cathedral, the crew attempted to return to Farnborough but unfavorable winds forced them to moor the airship at the Crystal Palace. The flight covered a distance of 40 miles (64 kilometers) and took 3 hours, 25 minutes.

A contemporary news article described the event:

The military airship “Nulli Secundus” made a successful trip to London from Farnborough on Saturday last. Starting at 10.40, with Colonel Capper and Mr. Cody on board, the airship—a huge sausage-shaped balloon of goldbeater’s skin of thirty thousand cubic feet capacity driven by a fifty horse-power petrol-engine—travelled to London at a rate of about twenty-five miles an hour, passing over Buckingham Palace and the War Office, and circling round St. Paul’s. On the return journey a strong head-wind brought the airship almost to a standstill over Clapham Common, and its course was altered to Sydenham, where it descended safely in the grounds of the Crystal Palace. From the spectacular point of view, the experiment was a splendid success, as the airship passed over London at a height of only seven hundred and fifty feet, and at this stage of the journey seemed to be completely master of the elements. Journalists who talk of “the conquest of the air,” however, or declare that Colonel Capper’s fifty-mile flight has completely changed the strategic position of Great Britain, will do well to note that gallant officer’s modest estimate of his achievement. The conditions of the experiment were exceptionally favourable. “At the start the pilot-balloon we sent up showed that there was no wind at all.” The slight breeze which sprang up was with them on their way to London; but the moderate head-wind at Clapham prevented them from making any progress at all. Colonel Capper summed up the lessons of the trip by observing:—”We have got a decent slow-speed airship which we can navigate if the wind is not too strong”—i.e., more than fifteen miles an hour—”and which can be raised and depressed at will without the use of ballast. We do not pretend that what we have done to-day is anything first-class, but we do say it is satisfactory as a first attempt.” We may further note that the return journey to Farnborough has been abandoned owing to the damage done to the airship by a high wind on Thursday morning.

The Spectator, No. 4,137, Saturday, 12 October 1907, at Page 515. 

British Army Dirigible No. 1. (Unattributed)
British Army Dirigible No. 1. (Unattributed)

Nulli Secundus was 120 feet (36.59 meters) in length with a diameter of 26 feet (7.93 meters). The envelope was constructed of fifteen layers of goldbeaters’ skin (the outer membrane of calf intestine) and was filled with hydrogen. The semi-rigid dirigible was powered by a 50 horsepower Antoinette engine. It was capable of 40 miles per hour (64 kilometers per hour).

Several days later, still moored at the Crystal Palace, the hydrogen gas was vented through the relief valves to prevent it being carried away in high winds. To speed up the dirigible’s deflation, the airship’s envelope was slashed. The materials were salvaged and returned to the Balloon Factory, where they were used to construct Nulli Secundus II.

Major General Sir John Edward Capper, KCB, KCVO, portrait by Elliott & Fry, 1916. (National Portrait Gallery NPGx82404)
Major General Sir John Edward Capper, K.C.B., K.C.V.O. Portrait by Elliott & Fry, 1916. (National Portrait Gallery NPGx82404)

Major General Sir John Edward Capper, K.C.B., K.C.V.O., was a senior British Army officer. He was born at Lucknow, Bengal, India, 7 December 1861; the son of William Copeland Capper and his wife, Sarah. Capper was commissioned into the Royal Engineers in 1880. He served on the Northwest Frontier and Burma from 1883 to 1899, and in South Africa until 1902.

Major and Brevet Lieutenant-Colonel John Edward Capper, Royal Engineers, was appointed a Companion of the Most Honourable Order of the Bath (C.B.), 31 October 1902. From 1903 to 1910, Capper commanded the Balloon School. He then became Commandant of the School of Military Engineering. On 4 June 1915, Major-General Capper was promoted to Knight Commander of the Most Honourable Order of the Bath (K.C.B.). He commanded the 24th Division during the Battle of the Somme. Following the War, Major-General Capper commanded the 64th Division, and British Troops in France and Flanders. He was lieutenant-governor of Guernsey from 1920 until his retirement from the British Army in 1925. He was invested Knight Commander of the Royal Victorian Order (K.C.V.O.), 11 July 1921. Major-General Capper died in 1955.

Samuel Franklin Cody (1867–1913), photographed in 1909.
Samuel Franklin Cody, 1909. (Monash University)

Samuel Franklin Cody (née Samuel Cowdery) was born 7 March 1862 ¹ at Birdville, Texas. He was the son of Samuel Franklin Cowdery and Phoebe Jane Van Horn Cowdery.

Cody commonly dressed in cowboy fashion, and appeared similar to “Buffalo Bill” Cody, whose name he had adopted in 1889. He had been a performer in a “wild west show” that traveled to England. Cody was an an early pioneer in manned kites and gliders, airships and powered airplanes.

Cody’s flight of British Army Aeroplane No 1 at Aldershot, 5 October 1908—one year after the cross-country flight of Nulli Secundus—is officially considered to be the first flight of a powered airplane in Great Britain.

Cody became a naturalized British Subject on 21 October 1909.

Samuel Cody was killed 7 August  1913 ² when a new airplane he was testing, the Cody Floatplane, came apart “due to inherent structural weakness,” at about 200 feet (61 meters).

Samuel Franklin Cody at the House of Commons, 15 September 1909, photographed by Sir John Benjamin Stone. (National Portrait Gallery NPG x 44615)

¹ Certificate of Naturalization to an Alien No. 18455

² Wills and Administrations. 1914. Page 408, Column 1.

© 2018, Bryan R. Swopes

24 September 1852

Henri Giffard (Deveaux, 1863)
Portrait de M. Henri Giffard, ingénieur. (Jacques-Martial Deveaux, 1863)

24 September 1852: French engineer Baptiste Henri Jacques Giffard (1825–1882 ) flew his hydrogen-filled dirigible, powered be a 3-horsepower steam engine, 17 miles (27 kilometers) from the Paris Hippodrome to Trappes in about three hours. During the flight he maneuvered the airship, demonstrating control.

The Giffard Dirigible (French: “directable”) consisted of an envelope 44.00 meters (144 feet, 4 inches) in length, 10 meters (32 feet, 10 inches) in diameter, and had a volume of 2,500 cubic meters (88,300 cubic feet). The envelope was filled with coal gas. A one-cylinder steam engine fueled with coke turned a 3.3-meter (10 feet, 10 inches) diameter, three-bladed pusher propeller mounted to the underslung gondola. The steam engine weighed just 250 pounds (113 kilograms), and with the boiler and fuel, came to 400 pounds (181 kilograms).

Illustration of Giffard’s dirigible. (National Air and Space Museum, Smithsonian Institution)

© 2016, Bryan R. Swopes

19 September 1902

Stanley Spencer’s airship over London.

19 September 1902:

The New York Times reported:

AN AIRSHIP TRAVELS NEARLY THIRTY MILES

Stanley Spencer, the Aeronaut, Astonishes Londoners.

He Starts from the Crystal Palace and Descends Near Harrow—Makes Various Detours.

     LONDON, Sept. 20.—Stanley Spencer, the well-known English aeronaut, yesterday successfully accomplished a remarkable flight over London in an airship of his own invention. It is estimated that his ship traveled nearly thirty miles.

     From the observations of those on the ground, Stanley seemed to have complete control of the vessel. He started from the Crystal Palace at 4:15 o’clock in the afternoon, and descended three hours later near Harrow. The route taken by the aeronaut was over Streatham, Clapham Common and the smoky south side of the metropolis, across the Thames, over the populous Chelsea district, and across Kensington and Earl’s Court out to Harrow. Spencer executed an easy descent at the little village of Eastcote.

     Spencer has recently been experimenting with his vessel at the Crystal Palace. Finding the conditions suitable, he suddenly decided to start on his dangerous voyage yesterday afternoon, and the usual crown of palace spectators gave him a hearty send-off. The airship at once rose to a height of about 300 feet. After traveling for about a mile with practically no deviation in course, Spencer made various detours, and seemed able to steer his ship as easily as a torpedo boat. Near Clapham Common he came fairly close to the ground for the purpose of manoeuvring. The appearance of the air craft created intense astonishment among the thousands of persons in the streets over whose heads the aeronaut passed.

      Pericval Spencer, referring to his brother’s trip, said it exceeded the longest trip of Santos-Dumont by nearly twenty miles.

     Spencer’s airship has a blunt nose and tail, and does not taper to a cigar-like point, like the airships of Santos-Dumont. In general outline it has the appearance of a whale. The bag, which is seventy-five feet long, contains 20,000 cubic feet of hydrogen. The frame is built of bamboo, and the propeller is in front, instead of behind, as is the case with Santos-Dumont’s vessels.

     The motive power of Spencer’s machine is a petroleum motor of about 30 horse power, and the machinery is controlled by electric buttons. The extreme speed of the new airship in calm weather is about fifteen miles an hour.

     The machine accommodates only one person, and its entire weight is about 600 pounds. Special features of the airship are devices to avoid pitching and dipping.

_______

     Stanley Spencer is the aeronaut who, on Sept. 15, 1898, made an ascension from the Crystal Palace, and afterward claimed that he had reached the highest elevation that had yest been attained.

     Scientists denied his assertion, pointing out that Coxwell and Glaisher, in September, 1862, reached an altitude of 37,000 feet, while Mr. Spencer only claimed that he had reached an altitude of 27,500 feet.

The New York Times, 20 September 1902

Mr. Stanley Spencer, with his family.

© 2015, Bryan R. Swopes

18 September 1928

Graf Zeppelin over the airship hangars at Firedrichshafen. (The Lothians collection)
Graf Zeppelin over the airship hangars at Friedrichshafen. (The Lothians collection)

18 September 1928: The rigid airship, Graf Zeppelin, LZ 127, made its first flight at Friedrichshafen, Germany.

Graf Zeppelin was named after Ferdinand Adolf Heinrich August Graf von Zeppelin, a German general and count, the founder of Luftschiffbau Zeppelin GmbH (the Zeppelin Airship Company). The airship was constructed of a lightweight metal structure covered by a fabric envelope. It was 776 feet (236.6 meters) long. Contained inside were 12 hydrogen-filled buoyancy tanks, fuel tanks, work spaces and crew quarters.

A gondola mounted underneath contained the flight deck, a sitting and dining room and ten passenger cabins. The LZ-127 was manned by a 36 person crew and could carry 24 passengers.

A dining room aboard Graf Zeppelin.

LZ 127 was powered by five water-cooled, fuel injected 33.251 liter (2,029.1 cubic inches) Maybach VL-2 60° V-12 engines producing 570 horsepower at 1,600 r.p.m., each. Fuel was either gasoline or blau gas, a gaseous fuel similar to propane. The zeppelin’s maximum speed was 80 miles per hour (128 kilometers per hour).

During the next nine years, Graf Zeppelin made 590 flights, including an around the world flight, and carried more than 13,000 passengers. It is estimated that it flew more than 1,000,000 miles. After the Hindenburg accident, it was decided to replace the hydrogen buoyancy gas with non-flammable helium. However, the United States government refused to allow the gas to be exported to Germany. With no other source for helium, in June 1938, Graf Zeppelin was deflated and placed in storage.

In his excellent history of the Royal Air Force leading up to the Battle of Britain, Duel of Eagles, Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, describes how Germany used Graf Zeppelin for reconnaissance missions, occasionally overflying the British Isles in poor weather due to “navigational errors.” The airship was scouting for radar sites and RAF radio frequencies. (This airship may have been Graf Zeppelin II, LZ 130.)

Both airships were scrapped and their duralumin structures salvaged.

© 2017, Bryan R. Swopes

20 August 1919

The DELAG airship Bodensee, LZ 120, at Friederichshafen, October 1919. (Library of Congress)

20 August 1919: The first airship built after World War I, Bodensee, LZ 120, made its first flight at Friedrichshafen, Germany, with Captain Bernard Lau in command. LZ 120 was built for Deutsche Luftschiffahrts-Aktiengesellschaft, DELAG, (German Airship Travel Corporation) especially to carry a small complement of passengers. It was hoped that this would generate favorable publicity and help to restart intercity travel by air.

Bodensee was the first fully-streamlined airship. Its teardrop shape was developed by engineer Paul Jaray and had no cylindrical sections. The shape had been tested with scale models in a wind tunnel. LZ 120 was the first airship to have the gondola was attached directly to the bottom of the envelope, decreasing aerodynamic drag.

Scale model of LZ 120 in a wind tunnel at Göttingen, Germany
Scale model of LZ 120 in a wind tunnel at Göttingen, Germany

LZ 120 was a rigid airship, or dirigible, with a metal skeleton structure covered with a cotton fabric envelope. Twelve hydrogen-filled buoyancy tanks were contained within the structure.  A crew of 12 operated the airship and it could carry 20 passengers.

LZ 120 was 396.33 feet (120.8 meters) in length, with a diameter of 61.38 feet (18.71 meters). The airship had a volume of approximately 20,000 cubic meters (706,000 cubic feet). The airship had an empty weight of 13,646 kilograms (36,698 pounds) and a gross weight of 23,239 kilograms (51,233 pounds).

Maybach Mb IVa at the Smithsonian Institution National Air and Space Museum.
Maybach Mb IVa at the Smithsonian Institution National Air and Space Museum.

LZ 120 was powered by four water-cooled, normally-aspirated, 23.093 liter (1,409.2 cubic inches) Maybach Motorenbau GmbH Mb IVa single overhead cam (SOHC) vertical inline six-cylinder engines with a compression ratio of 6.08:1 and four valves per cylinder. The Mb IVa produced 302 horsepower at 1,700 r.p.m., but was derated to 245 horsepower. Two engines were mounted in the aft centerline engine car and drove a two-bladed propeller with a diameter of 5.2 meters (17.1 feet) through a reversible gear train. Each of the other engines were mounted near the center of the airship, outboard. They each turned a two-bladed propeller with a diameter of 3.2 meters (10.5 feet), which were also reversible.

LZ 120 had a maximum speed of 82 miles per hour (132 kilometers per hour).

After two test flights under Captain Lau, Bodensee entered scheduled passenger service on 24 August 1919 under the command of Dr. Hugo Eckener. It flew from Friedrichshafen to the Oberwiesenfeld at Munich, then on to Berlin-Staaken.

In 1921, Bodensee was turned over to Italy as war reparations. It was renamed Esperia and continued in operation until 1928.

© 2016, Bryan R. Swopes