Tag Archives: Test Pilot

21 November 1947

Corky Meyer in the cockpit of the first Grumman XF9F-2 Panther, Bu. No. 122475, during the first flight, 21 November 1947. (U.S. Navy)
Corky Meyer in the cockpit of the first Grumman XF9F-2 Panther, Bu. No. 122475, during the first flight, 21 November 1947. (Grumman Aircraft Engineering Corporation)
Corwin H. ("Corky") Meyer
Corwin Henry Meyer, 1920–2011. (Grumman)

21 November 1947: Grumman Aircraft Engineering Corporation engineering test pilot Corwin Henry (“Corky”) Meyer took off from the company’s 5,000 foot runaway at Bethpage, Long Island, New York, in the first prototype XF9F-2 Panther, Bu. No. 122475. After the preliminary flight evaluation, Meyer landed the new jet fighter on a longer runway at Idlewild Airport. The Bethpage runway was only 5,000 feet (1,524 meters) long. As the first jet aircraft built by Grumman, it wasn’t known if the XF9F-2 could land on that short a runway.

Air & Space/Smithsonian magazine quoted Meyer as saying that the weather was “the foulest of any first flight in my experience.” He described the prototype’s handling qualities: “It handled like a J-3 Cub.” In an article for Flight Journal, Corky Meyer wrote: “I conducted a very satisfactory first flight of the 5,000-pound-thrust Rolls-Royce Nene-powered fighter on November 21, 1947.”

Corwin H. Meyer also made the first flights in Grumman’s F7F Tigercat, F8F Bearcat, F9F Panther and Cougar, and F11F Tiger. He eventually rose to Senior Vice President of Grumman Aerospace Corporation.

Grumman XF9F-2 prototype, photographed 20 November 1947. (Grumman Aircraft Engineering Corporation)

The XF9F-2 Panther was the first jet-powered aircraft to be built by Grumman, a major supplier of aircraft for the United States Navy. It was a single-seat, single-engine, day fighter, designed for operation on the U.S. Navy’s aircraft carriers. It was developed from a proposed four-engine XF9F-1 night fighter. Grumman planned to use the Rolls-Royce RB.41 Nene centrifugal-flow turbojet engine. With 5,000 pounds rated thrust at 12,400 r.p.m., the Nene was more powerful (and more reliable) than any engine manufactured by an American company.

The first prototype Grumman XF9F-2 Panther at Grumman's Plant 4, 1947. (Grumman Aircraft Engineering Corporation)
The first prototype Grumman XF9F-2 Panther at Grumman’s Plant 4, 1947. (Grumman Aircraft Engineering Corporation)

Originally it was planned that the Nene would be licensed for production to the Taylor Turbine Corporation as the J42-TT-2. No J42s were ready, so Taylor supplied Grumman with imported Rolls-Royce engines. The Navy had concerns about Taylor’s capability to produce engine in sufficient quantities and arranged for the J42 license to be sold to Pratt & Whitney.

Ensign Neil A. Armstrong, as wingman to Lieutenant (j.g.) Ernie Moore, is flying the second Grumman F9F-2 Panther, Bu. No. 125122 (marked S 116), assigned to VF-51, USS Essex (CV-9), 1951. (Naval Aviation Museum)
Ensign Neil A. Armstrong, as wingman to Lieutenant (j.g.) George Russell, is flying the second Grumman F9F-2 Panther, Bu. No. 125122 (marked S 116), assigned to VF-51, USS Essex (CV-9), 1951. (John Moore/Naval Museum of Naval Aviation)

The Panther was placed into production as the F9F-2. The F9F-2 was 37 feet, 5-3/8 inches (11.414 meters) long with a wingspan of 38 feet, 5⅜ inches (11.719 meters) long, with a wingspan of 38 feet, 0 inches (11.528 meters)— not including wing tanks. Its overall height was 11 feet, 4 inches (3.454 meters). The wings could be hydraulically folded to reduce the span for storage aboard ship. The Panther weighed 9,303 pounds (4,220 kilograms) empty, and had a gross weight of 19,494 pounds (8,842 kilograms.

Grumman F9F-5 Panther, Bu. No. 126034, of VF-781, catches an arresting cable when landing aboard USS Oriskany (CVA-34), 1952. (U.S. Navy)
Grumman F9F-5 Panther, Bu. No. 126034, of VF-781, catches an arresting cable when landing aboard USS Oriskany (CVA-34), 15 November 1952. (U.S. Navy)

The F9F-2 was powered by a Pratt & Whitney JT6 (J42-P-8) turbojet engine which produced 5,000 pounds of thrust (22.241 kilonewtons) at Sea Level, and 5,750 pounds (25.577 kilonewtons) with afterburner. The J42 was a license-built version of the Rolls-Royce Nene. The engine used a single-stage centrifugal-flow compressor, 9 combustion chambers and a single-stage axial-flow turbine. The J42-P-8 weighed 1,715 pounds (778 kilograms).

The Panther had a maximum speed of 575 miles per hour (925 kilometers per hour) at Sea Level. Its service ceiling was 44,600 feet (13,594 meters), and the range was 1,353 miles (2,177 kilometers).

The Panther was armed with four M3 20 mm autocannon placed in the nose. It could carry up to 3,000 pounds (1,361 kilograms) of bombs or eight 5-inch (12.7 centimeters) rockets on four hardpoints under each wing.

Lt. Royce Williams, USN, points out battle damage to his Grumman F9F-5 Panther, aboard USS Oriskany (CVA-34), 18 November 1952. (U.S. Navy)
Lt. Royce Williams, USN, points out battle damage to his Grumman F9F-5 Panther, Bu. No. 125459, aboard USS Oriskany (CVA-34), 18 November 1952. (U.S. Navy via Flight Journal)

It was a very successful air-to-air and air-to-ground fighter during the Korean War. On 18 November 1952, Lieutenant Elmer Royce Williams, USN, flying an F9F-5 Panther, Bu. No. 125459, of VF-781 aboard the aircraft carrier USS Oriskany (CVA-34), shot down four of seven Soviet Air Force MiG 15 fighters which had launched from Vladivostok toward Task Force 77. His Panther sustained significant damage from enemy cannon shells. Though he safely returned to his carrier, the fighter, Number 106, was so badly damaged that it was pushed over the side. Lieutenant Royce was awarded the Silver Star for this action. No other pilot has ever shot down four MiG fighters during a single combat action.

This Grumman F9F-5 Panther aboard the USS Midway Museum, San Diego, California, is painted to represent Royce Williams' fighter. (USS Midway Museum)
This Grumman F9F-5 Panther aboard the USS Midway Museum, San Diego, California, is painted to represent Royce Williams’ fighter. (USS Midway Museum)

The F9F Panther was flown during the Korean War by such famed naval aviators as Ted Williams, and future astronauts John Glenn and Neil Armstrong.

Grumman built 1,358 F9F-2,-3,-4 and -5 Panthers and another 1,392 swept wing F9F-6, -7 and -8 Cougars. Panthers remained in service with the United States Navy until 1958, and Cougars until 1974.

The combat survivability of Grumman's fighters earne dteh factory the nickname of "The Grumman Iron Works". In this photograph, future NASA astronaut John H. Glenn, the first American to orbit the Earth, examines some of the 714 holes in his F9F Panther. (U.S. Navy)
The combat survivability of Grumman’s fighters earned the factory the nickname of “The Grumman Iron Works”. In this photograph, future NASA astronaut Major John H. Glenn, U.S. Marine Corps, the first American to orbit the Earth, examines some of the 714 holes in his F9F Panther. (U.S. Navy)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 November 1953

NACA test pilot Scott Crossfield in the cockpit of the Douglas D-558-II Skyrocket after his record-setting flight, 20 November 1953. (NASA) 20 November 1953: At Edwards Air Force Base, California, NACA’s High Speed Flight Station test pilot Albert Scott Crossfield rode behind the flight crew of the Boeing P2B-1S Superfortress as it carried the Douglas Aircraft Company D-558-II Skyrocket supersonic research rocketplane to its launch altitude. As the four-engine bomber climbed through 18,000 feet (5,486 meters), Crossfield headed back to the bomb bay to enter the Skyrocket’s cockpit and prepare for his flight.

The Douglas D-558-II was Phase II of a U.S. Navy/Douglas Aircraft Company/National Advisory Committee on Aeronautics joint research project exploring supersonic flight. It was a swept-wing airplane powered by a single Reaction Motors LR8-RM-6 four-chamber rocket engine. The Skyrocket was fueled with alcohol and liquid oxygen. The engine was rated at 6,000 pounds of thrust (26.69 kilonewtons) at Sea Level.

There were three Phase II aircraft. Originally, they were also equipped with a Westinghouse J34-W-40 turbojet engine which produced 3,000 pounds of thrust (13.35 kilonewtons) and the Skyrockets took off from the surface of Rogers Dry Lake. Once the D-558-II reached altitude, the rocket engine was fired for the speed runs. As higher speeds were required, the program shifted to an air launch from a B-29 (P2B-1S) “mothership”. Without the need to climb to the test altitude, the Skyrocket’s fuel load was available for the high speed runs.

NACA 144. a Douglas D-558-II Skyrocket, Bu. No. 37974, on Rogers Dry Lake. (NASA)
NACA 144. a Douglas D-558-II Skyrocket, Bu. No. 37974, on Rogers Dry Lake. (NASA)

The D-558-II was 42.0 feet (12.80 meters) long, with a wingspan of 25.0 feet (7.62 meters). The leading edge of the wing was swept at a 35° angle and the tail surfaces were swept to 40°. The aircraft weighed 9,421 pounds (4,273 kilograms) empty and had a maximum takeoff weight of 15,787 pounds (7,161 kilograms). It carried 378 gallons (1,431 liters) of water/ethyl alcohol and 345 gallons (1,306 liters) of liquid oxygen.

The mothership, NACA 137, was a Boeing Wichita B-29-95-BW Superfortress, U.S. Air Force serial number 45-21787. It was transferred to the U.S. Navy, redesignated P2B-1S and assigned Bureau of Aeronautics number 84029. Douglas Aircraft modified the bomber for its drop ship role at the El Segundo plant.

Douglas D-558-II Skyrocket, Bu. No., 37974, NACA 144, is dropped from the Boeing P2B-1S Superfortress, Bu. No. 84029, NACA 137. (NASA)
Douglas D-558-II Skyrocket, Bu. No. 37974, NACA 144, is dropped from the Boeing P2B-1S Superfortress, Bu. No. 84029, NACA 137. (NASA)

Going above the planned launch altitude, the Superfortress was placed in a slight dive to build to its maximum speed. At the bomber’s critical Mach number (Mcr), the Skyrocket was just above its stall speed. At 32,000 feet (9,754 meters), Crossfield and the Skyrocket were released. The rocketplane fell for about 400 feet (122 meters) until the rocket engine ignited and then it began to accelerate.

Crossfield climbed at a steep angle until he reached 72,000 feet (21,946 meters), and then leveled off. Now in level flight, the D-558-II accelerated, quickly passing Mach 1, then Mach 1.5. Crossfield pushed the nose down and began a shallow dive. The Skyrocket, still under full power, built up speed. As it passed through 62,000 feet (18,998 meters) the Skyrocket reached its maximum speed, Mach 2.005, or 1,291 miles per hour (2,078 kilometers per hour).

Scott Crossfield and the Douglas D-558-II Skyrocket, with their support team: two North American F-86 Sabre chase planes and the Boeing P2B-1S Superfortress mothership, at the NACA High Speed Flight Station, Edwards Air Force Base, California, 1 January 1954. (NASA)
Scott Crossfield and the Douglas D-558-II Skyrocket, with their support team: two North American F-86 Sabre chase planes and the Boeing P2B-1S Superfortress mothership, at the NACA High Speed Flight Station, Edwards Air Force Base, California, 1 January 1954. (NASA)

Scott Crossfield was the first pilot to fly an aircraft beyond Mach 2, twice the speed of sound. During his career as a test pilot, he flew the Douglas D-558-II, the Bell X-1, Bell X-2 and North American X-15. He made 112 flights in rocket-powered aircraft, more than any other pilot.

NACA Test Pilot Albert Scott Crossfield on Rogers Dry Lake. (NASA)
NACA Test Pilot Albert Scott Crossfield on Rogers Dry Lake. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

20 November 1940

North American Aviation's NA-73X fighter prototype, engine idling, with Vance Breese in the cockpit at Mines Field, Los Angeles, 26 October 1941. (North American Aviation Inc.)
North American Aviation’s NA-73X fighter prototype, engine idling, with Vance Breese in the cockpit at Mines Field, Los Angeles, 26 October 1940. (North American Aviation Inc.)

20 November 1940: North American Aviation’s Chief Test Pilot, Paul Baird Balfour, made his first flight in the NA-73X, NX19998, prototype for a Royal Air Force fighter, the Mustang Mk.I.

Vance Breese was the free-lance test pilot who made the first seven flights in the new airplane. Breese claimed to have made a bet with North American executives that Balfour would crash the prototype on his first flight.

Paul B. Balfour (1908–1951). This is Balfour’s NAA employee file card. (North American Aviation Inc.)

This flight was scheduled to be a high speed test. Edgar Schmued, the designer, offered to show Balfour around the airplane. “Before this flight, I asked Balfour to get into the airplane and go through the routine of a takeoff and flight. He responded that one airplane is like another and he would not need the routine checkout.”

The ground crew started the NA-73X’s 1,150 horsepower Allison V-1710-39 liquid-cooled V-12 engine at 5:40 a.m. and let it warm up to normal operating temperature. When it was restarted just prior to Paul Balfour’s flight, “it was a little hard to start,” according to Olaf Anderson, the airplane’s mechanic.

The prototype Mustang, NA-73X, lies upside down in a plowed field, 20 November 1941. (North American Aviation Inc.)
The prototype Mustang, NA-73X, lies upside down in a plowed field, 20 November 1940. (North American Aviation Inc.)

Balfour took off from Mines Field at about 7:10 a.m. After about twelve minutes of flight, the Allison stopped running. Balfour was too far from Mines Field to make it back to the runway. He landed in a plowed field west of Lincoln Boulevard. When the tires hit the soft surface, the prototype flipped over. Balfour was not hurt and was able to crawl out of the upside-down wreck.

The Civil Aeronautics Board report described the damage as “engine housing broken, both wingtips damaged, tail surfaces damaged, top of fuselage damaged, and other miscellaneous damage.” The NA-73X had accumulated just 3 hours, 20 minutes of flight.

Vance Breese won his bet.

Paul Balfour was not injured in the crash landing, but the NA-73X prototype was significantly damaged. (North American Aviation Inc.)
Paul Balfour was not injured in the crash landing, but the NA-73X prototype was significantly damaged. (North American Aviation Inc.)

According to the C.A.B. investigation, the engine had stopped due to fuel starvation when Balfour neglected to select another tank.

The prototype was taken back to the factory and rebuilt. It would become the famous Mustang, one of the most significant aircraft of World War II.

Damage to the wingtips, tail surfaces, fuselage. (North American Aviation Inc.)
Damage to the wingtips, tail surfaces, fuselage. (North American Aviation Inc.)

Robert C. Chilton was hired as the new Chief Test Pilot. He would continue testing the Mustang developments throughout the war. Chilton made his first flight in NA-73X on 3 April 1941.

The Mustang prototype was hoisted out of the plowed field and taken back to the factory where it was rebuilt. (North American Aviation Inc.)
The Mustang prototype was hoisted out of the plowed field and taken back to the factory where it was rebuilt. (North American Aviation Inc.)

Paul Balfour continued to work for North American Aviation, testing the NA-40 and NA-40B prototypes and the B-25 Mitchell medium bomber. He later served in the United States Air Force.

Paul Baird Balfour was born 5 July 1908 in Washington State. He was the son of Fred Patrick Balfour and Edna May Baird Balfour. Balfour attended two years of college.

Paul Balfour entered the U.S. Army Air Corps (prior to 1930). He was stationed at Rockwell Field, San Diego, California.

Balfour married Martha Lillette Cushman of Coronado, California, at Yuma, Arizona, 6 June 1930.

Balfour began working as a test pilot for North American Aviation, Inc., 1 March 1936.

On 2 July 1938, he married Lois Tresa Watchman at Kingman, Arizona. They would have two children.

Paul B. Balfour, center, with a North American Aviation B-25 Mitchell medium bomber. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Paul B. Balfour, center, with a North American Aviation B-25 Mitchell medium bomber. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

On 9 November 1951, Major Paul B. Balfour, U.S. Air Force, attached to the 1002nd Inspector General Group at Norton Air Force Base, California, was flying a North American VB-25J, 44-30955, a transport conversion of a B-25J-30-NC Mitchell medium bomber.

Shortly after takeoff, at about 10:00 a.m., the airplane developed engine trouble. Unable to return to Norton, Balfour attempted a belly landing at a small private airfield. Witness saw that the airplane’s left engine was idling, and its propeller was feathered. As he approached, the airplane was blocked by a windbreak of eucalyptus trees bordering U.S. Route 66. Balfour banked away from the trees but the B-25 crashed in an orange grove along Bloomington Avenue in Rialto, approximately 7 miles (11 kilometers) north of Norton.

Balfour, still buckled in his seat, was thrown clear of the burning wreck and landed in the street. One man on board was killed and two others seriously injured. Balfour died in a hospital three hours later. He was 41 years old. Major Balfour was buried at the Inglewood Park Cemetery, Inglewood, California.

Burning wing of North American VB-25J 44-30955, near Rialto, California, 9 November 1951.
Burning wing of North American VB-25J 44-30955, near Rialto, California, 9 November 1951.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 November 1966

Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)
Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)

18 November 1966: On Flight 175 of the research program, Major William J. (“Pete”) Knight, U.S. Air Force, flew the newly-modified North American Aviation X-15A-2, 56-6671, to Mach 6.33 (4,261 miles per hour/6,857 kilometers per hour) at 98,900 feet (30,245 meters). This is just 11 years, to the day, since Pete Everest made the first powered flight in the Bell Aircraft Corporation X-2 rocketplane, with more than 6 times an increase in speed.

On this date, NASA made an attempt to launch two X-15s, -671 and -672, using the NB-52A 52-003 and NB-52B 52-008. However -672, the number three ship, had to abort the mission.

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)

Balls 8, the NB-52B, flown by NASA test pilot Fitz Fulton and Colonel Joe Cotton, USAF, carried 56-6671 to the launch point over Mud Lake, Nevada, approximately 200 miles to the north of Edwards AFB. (This was the lake where -671 was severely damaged in an emergency landing, 9 November 1962. It was returned to North American to be rebuilt to the X-15A-2 configuration and returned to flight operation 19 months later.)

At 1:24:07.2 p.m. local time, Pete Knight and the X-15 were dropped from the pylon under the right wing of the B-52. He ignited the Reaction Motors XLR99-RM-1 and began to accelerate with its 57,000 pounds of thrust (253.549 kilonewtons).

Since this was to be a high temperature test flight, it was planned to fly no higher than 100,000 feet (30,480 meters). The denser atmosphere would result in greater aerodynamic heating of the rocketplane.

With the two external propellant tanks carrying an additional 1,800 gallons (6,814 liters) of liquid ammonia and liquid oxygen, the engine ran for 2 minutes, 16.4 seconds. The rocketplane had accelerated to Mach 2. The external tanks emptied in about 60 seconds and were jettisoned. The tanks were equipped with parachutes. They were recovered to be reused on later flights.

The X-15, now about 25,000 pounds (11,340 kilograms) lighter and without the aerodynamic drag of the tanks, continued to accelerate. At its highest speed, the rocketplane was travelling approximately 6,500 feet per second (1,981 meters per second), more than twice as fast as a high-powered rifle bullet. Its surface temperatures exceeded 1,200 °F. (649 °C.)

Knight landed the X-15 on Rogers Dry Lake at Edwards Air Force Base. The duration of this flight had been 8 minutes, 26.8 seconds.

The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)
The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 November 1955

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)
Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

18 November 1955: Major Frank Kendall Everest, Jr., USAF, makes the first powered flight in the Bell X-2 research rocketplane, 46-674, at Edwards AFB, California. The rocketplane was airdropped from a Boeing EB-50D Superfortress, 48-096. Only one 5,000-lb. thrust rocket tube ignited, but that was enough to accelerate “Pete” Everest to Mach 0.992 (655.4 miles per hour/1,054.5 kilometers per hour) at 35,000 feet (10,668 meters).

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The Bell X-2 being loaded into the EB-50D Superfortress "mothership" at Edwards AFB, California. (LIFE Magazine)
The Bell X-2 being loaded into the EB-50D Superfortress “mothership” at Edwards AFB, California. (LIFE Magazine)

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)
The Bell X-2 and Boeing EB-50D Superfortress in flight. (U.S. Air Force)

Pete Everest joined the United States Army Air Corps shortly before the United States entered World War II. He graduated from pilot training in 1942 and was assigned as a P-40 Warhawk pilot, flying combat missions in North Africa, Sicily and Italy. He was credited with shooting down two German airplanes and damaging a third.

Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations where he shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war.

The Bell X-2 was dropped from a Boeing EB-50D Superfortress, 48-096. (U.S. Air Force)

After the war, Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California. At Edwards, he was involved in nearly every flight test program, flying the F-88, F-92, F-100, F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the X-1B to Mach 2.3, and he set a world speed record with the X-2 at Mach 2.9 (1,957 miles per hour, 3,149.5 kilometers per hour) which earned him the title, “The Fastest Man Alive.”

Pete Everest gives some technical advice to William Holden ("Major Lincoln Bond"), with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Pete Everest gives some technical advice to actor William Holden (“Major Lincoln Bond”), with Bell X-2 46-674, on the set of “Toward The Unknown,” 1956. (Toluca Productions)

Frank Everest returned to operational assignments and commanded a fighter squadron, two combat crew training wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base. In 1965, Pete Everest was promoted to the rank of brigadier general. He was commander of the Aerospace Rescue and Recovery Service. He retired from the Air Force in 1973 after 33 years of service. General Everest died in 2004.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force, 1920–2004. (U.S. Air Force)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather