Tag Archives: Test Pilot

14 January 1953

Convair XF2Y-1 Sea Dart Bu. No. 137634 during high-speed taxi on San Diego Bay (National Naval Aviation Museum)

14 January 1953: During a high-speed taxi test on San Diego Bay, Convair Chief Test Pilot Ellis Dent (“Sam”) Shannon inadvertently made the first flight of the prototype XF2Y-1 Sea Dart, Bu. No. 137634. The airplane flew approximately 1,000 feet (305 meters) across the bay.

Sam Shannon with the Convair XF2Y-1 Sea Dart. (Image courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

The Sea Dart was a prototype single-seat, twin-engine, delta-winged fighter designed and built by the Convair Division of General Dynamics Corporation at San Diego, California. It was equipped with retractable skis in place of ordinary landing gear to allow it to take off and land on water, snow or sand.

The XF2Y-1 was 52 feet, 7 inches (16.027 meters) long with a wingspan of  33 feet, 8 inches (10.262 meters) and height of 16 feet, 2 inches (4.928 meters) with the skis retracted. The airplane had an empty weight of 12,625 pounds (5,727 kilograms) and maximum takeoff weight of 21,500 pounds (9,752 kilograms).

Convair XF2Y-1 Sea Dart Bu. No. 137634 in flight over San Diego, California. (National Naval Aviation Museum)

The prototype XF2Y-1 was powered by two Westinghouse J34-WE-32 single-shaft axial-flow turbojet engines. The engine used an 11-stage compressor and 2-stage turbine. It was rated at 3,370 pounds (14.99 kilonewtons) of thrust, and 4,900 pounds (21.80 kilonewtons) with afterburner. The J34-WE-32 was 15 feet, 4.0 inches (4.674 meters) long, 2 feet, 1.6 inches (0.650 meters) in diameter, and weighed 1,698 pounds (770.2 kilograms).

The YF2Y-1 service test prototypes that followed were powered by Westinghouse XJ46-WE-2 engines. The J46 was also a single-shaft axial-flow turbojet, but had a 12-stage compressor and 2-stage turbine. These were rated at 4,080 pounds of thrust  (18.15 kilonewtons), and 6,100 pounds (27.13 kilonewtons) with afterburner. The J46-WE-2 was 15 feet, 11.7 inches (4.869 meters) long, 2 feet, 5.0 inches (0.737 meters) in diameter and weighed 1,863 pounds (845 kilograms).

The YF2Y-1 service test aircraft had a maximum speed of 695 miles per hour (1,118 kilometers per hour) at 8,000 feet (2,438 meters), and 825 miles per hour (1,328 kilometers per hour)—Mach 1.25— at 36,000 feet (10,973 meters). The service ceiling was estimated at 54,800 feet (16,073 meters), and the range was 513 miles (826 kilometers).

There was one XF2Y-1 and four YF2Y-1 aircraft built, but only two of the service test aircraft ever flew. The XF2Y-1 prototype is in storage at the Smithsonian Institution National Air and Space Museum’s restoration facility. One YF2Y-1, Bu No. 135763, is displayed at the San Diego Air and Space Museum, and another, Bu. No. 135764, is in the collection of the Harold F. Pitcairn Wings of Freedom Aviation Museum at Horsham, Pennsylvania, about 30 minutes north of Philadelphia.

Convair XF2Y-1 Sea Dart Bu. No. 137634 taxis to the seaplane ramp at the north end of San Diego Bay. (National Naval Aviation Museum)

Ellis Dent Shannon was born at Andalusia, Alabama, 7 February 1908. He was the third of five children of John William and Lucy Ellen Barnes Shannon.

He was commissioned as a second lieutenant the Alabama National Guard (Troop C, 55th Machine Gun Squadron, Cavalry) 21 May 1926. He transferred to the Air Corps, United States Army, in 1929. In 1930, he was stationed at Brooks Army Airfield, Texas.

Lieutenant Ellis Dent Shannon, Air Corps, United States Army

In 1932 Shannon was was assigned as a flight instructor and an aviation advisor to the government of China.

On 24 December 1932, Shannon married Miss Martha Elizabeth Reid at Shanghai, China. They had son, Ellis Reid Shannon, born at Shanghai, 24 August 1934, and a daughter, Ann N. Shannon, born at Baltimore, Maryland, in 1940.

Shannon and his family returned to the United States in 1935 aboard SS Bremen, arriving at New York.

He was employed by the Glenn L. Martin Co., Baltimore, Maryland, in 1936 as a test and demonstration pilot. He traveled throughout Latin America, demonstrating the company’s aircraft. As a test pilot, he flew the Martin Model 187 Baltimore, the B-26 Marauder, PBM Mariner and the Martin JRM Mars.

In February 1943, Shannon started working as a Chief of Flight Research for the Consolidated Aircraft Company at San Diego, California. While there, made the first flights of the Consolidated XB-24K, a variant of the Liberator bomber with a single vertical tail fin; the XR2Y-1, a prototype commercial airliner based on the B-24 Liberator bomber; the XB-46 jet-powered medium bomber; the XP5Y-1 Tradewind, a large flying boat powered by four-turboprop-engines; the Convair 340 Metropolitan airliner; and the XF-92A, a delta-winged proof-of-concept prototype. Shannon also participated in the flight test program of the YF-102A Delta Dart.

After retiring from Convair in 1956, Ellis and Martha Shannon remained in the San Diego area.

Ellis Dent Shannon died at San Diego, California, 8 April 1982 at the age of 74 years.

Ellis Dent Shannon, Convair Chief Test Pilot, circa 1953. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

© 2018 Bryan R. Swopes

14 January 1950

This is the second Mikoyan Gurevich I 330 prototype, SI 02.
This is the second Mikoyan Gurevich I 330 prototype, SI 02.

14 January 1950: The Mikoyan Gurevich prototype fighter I 330 SI made its first flight with test pilot Ivan Ivashchenko. It would be developed into the MiG 17.

The MiG 17 was an improved version of the earlier MiG 15. It was a single-seat, single engine fighter armed with cannon, and capable of high subsonic and transonic speed.

Mikoyan Gurevich MiG 17.
Mikoyan Gurevich MiG 17.

The prototype’s wings were very thin and this allowed them to flex. The aircraft suffered from “aileron reversal,” in that the forces created by applying aileron to roll the aircraft about its longitudinal axis were sufficient to bend the wings and that caused the airplane to roll in the opposite direction.

The first prototype I 330 SI developed “flutter” while on a test flight, 17 March 1950. This was a common problem during the era, as designers and engineers learned how to build an airplane that could smoothly transition through the “sound barrier.” The rapidly changing aerodynamic forces caused the structure to fail and the horizontal tail surfaces were torn off. The prototype went into an unrecoverable spin. Test pilot Ivashchenko was killed.

Two more prototypes, SI 02 and SI 03, were built. The aircraft was approved for production in 1951.

More than 10,000 MiG 17 fighters were built in the Soviet Union, Poland and China. The type remains in service with North Korea.

A MiG 17 in flight.
A MiG 17 in flight.
Иван Т. Иващенко летчик-испытатель
Иван Т. Иващенко летчик-испытатель

Ива́н Тимофе́евич Ива́щенко (Ivan T. Ivashchenko) was born at Ust-Labinsk, Krasnodar Krai, Russia, 16 October 1905. He served in the Red Army from 1927 to 1930. He graduated from the Kuban State University in 1932.

Ivashchenko was trained as a pilot at the Lugansk Military Aviation School at Voroshilovgrad, and a year later graduated from the Kachin Military Aviation College at Volgograd.

In 1939, he fought in The Winter War. During the Great Patriotic War, Ivan Ivashchenko flew with a fighter squadron in the defense of Moscow.

From 1940 to 1945, Ivan Ivashchenko was a test pilot. He trained at the M.M. Gromov Flight Research Institute at Zhokovsky, southeast of Moscow, in 1941. He was assigned to Aircraft Factory No. 18 at Kuibyshev (Samara) from 1941 to 1943. Ivashchenko flew the Ilyushin Il-2 Sturmovik fighter bomber extensively. From 1943 to 1945 he was a test pilot for Lavochkin OKB at Factory 301 in Khimki, northwest of Moscow.

In 1945 Ivashchenko was reassigned to OKB Mikoyan, where he worked on the development of the MiG 15 and MiG 17 fighters. He participated in testing ejection seat systems and in supersonic flight.

Ivan T. Ivashchenko was a Hero of the Soviet Union, and was awarded the Order of Lenin, Order of the Red Banner (two awards) and Order of the Patriotic War. Killed in the MiG 17 crash at the age of 44 years, he was buried at the Novodevichy Cemetery in Moscow.

© 2017, Bryan R. Swopes

13 January 1942

Heinkel He 280 V-1 DL+AS with engine intake fairings.

13 January 1942:

“. . .The first ejection seats were developed independently during World War II by Heinkel and SAAB. Early models were powered by compressed air and the first aircraft to be fitted with such a system was the Heinkel He 280 prototype jet-engined fighter in 1940. One of the He 280 test pilots, Helmut Schenk, became the first person to escape from a stricken aircraft with an ejection seat on 13 January 1942 after his control surfaces iced up and became inoperable. The fighter, being used in tests of the Argus As 014 impulse jets for Fieseler Fi 103 missile development, had its usual HeS 8A turbojets removed, and was towed aloft from Rechlin, Germany by a pair of Bf 110C tugs in a heavy snow-shower. At 7,875 feet (2,400 m), Schenk found he had no control, jettisoned his towline, and ejected. . . .”

—Wikipedia

Heinkel He 280 V1, DL+AS, the first prototype. The engine intakes and exhausts are faired over. This aircraft was lost 13 January 1942. Helmut Schenk successfully ejected from it. (Unattributed)
A Heinkel He 111 bomber tows the prototype He 280 V1 DL+AS on a snowy runway.

10 January 1964

Boeing B-52H-170-BW 61-023
Boeing B-52H-135-BW Stratofortress 60-0006, similar in appearance to to 61-023. (U.S. Air Force)

10 January 1964: This Boeing B-52H Stratofortress, serial number 61-023, flown by Boeing test pilot Charles F. (“Chuck”) Fisher, was conducting structural testing in turbulence near East Spanish Peak, Colorado. The other crew members were pilots Richard V. Curry and Leo Coer, and navigator James Pittman. Dick Curry was flying the airplane and Chuck Fisher, the aircraft commander, was in the co-pilot’s position. Pittman was on the lower deck.

The bomber was carrying two North American Aviation GAM-77 Hound Dog cruise missiles on pylons under its wings.

The Boeing B-52 Stratofortress had been designed as a very high altitude penetration bomber, but changes in Soviet defensive systems led the Strategic Air Command to change to very low altitude flight as a means of evading radar. This was subjecting the airframes to unexpected stresses. “Ten-Twenty-Three” (its serial number was 61-023, shortened on the vertical fin to “1023”) had been returned to Boeing Wichita by the Air Force to be instrumented to investigate the effects of high-speed, low-altitude flight on the 245-ton bomber.

Flying at 14,300 feet (4,359 meters) and 345 knots (397 miles per hour, 639 kilometers per hour), indicated air speed, the airplane encountered severe clear air turbulence and lost the vertical stabilizer. Several B-52s had been lost under similar circumstances. (Another, a B-52D, was lost just three days later at Savage Mountain, Maryland.)

East Spanish Peak (left), 12,688 feet (3,867 meters) and West Spanish Peak, 13,626 feet (4,153 meters), Sangre de Cristo Mountains, Colorado. (Footwarrior)
East Spanish Peak (left), 12,688 feet (3,867 meters) and West Spanish Peak, 13,626 feet (4,153 meters), Sangre de Cristo Mountains, Colorado. (Footwarrior)
Charles F. Fisher. (Argenta Images)
Charles F. Fisher. (Argenta Images)

Chuck Fisher immediately took control of the B-52. He later reported,

“As the encounter progressed, a very sharp-edged blow which was followed by many more. We developed an almost instantaneous rate of roll at fairly high rate. The roll was to the far left and the nose was swinging up and to the right at a rapid rate. During the second portion of the encounter, the airplane motions actually seemed to be negating my control inputs. I had the rudder to the firewall, the column in my lap, and full wheel, and I wasn’t having any luck righting the airplane. In the short period after the turbulence I gave the order to prepare to abandon the airplane because I didn’t think we were going to keep it together.”

A Boeing report on the incident, based on installed sensors and instrumentation aboard -023, said that the bomber had

“. . . flown through an area containing the combined effects of a (wind) rotor associated with a mountain wave and lateral shear due to airflow around a mountain peak. . . Gust initially built up from the right to a maximum of about 45 feet per second [13.7 meters per second](TAS), then reversed to a maximum of 36 feet per second [11 meters per second] from the left, before swinging to a maximum of about 147 feet per second [44.8 meters per second] from the left followed by a return to 31 feet per second [9.5 meters per second].”

Fisher flew the bomber back to Wichita and was met by a F-100 Super Sabre chase plane. When the extent of the damage was seen, the B-52 was diverted due to the gusty winds in Kansas. Six hours after the damage occurred, Chuck Fisher safely landed the airplane at Eaker Air Force Base, Blythville, Arkansas. He said it was, “the finest airplane I’ve ever flown.”

Boeing B-52H-170-BW Stratofortress 61-023, "Ten-Twenty-Three", after losing the vertical fin, 10 January 1964. (Boeing)
Boeing B-52H-170-BW Stratofortress 61-023, “Ten-Twenty-Three”, after losing the vertical fin, 10 January 1964. (Boeing)

61-023 was repaired and returned to service. It remained active with the United States Air Force until it was placed in storage at Tinker Air Force Base, Oklahoma, 24 July 2008.

Charles F. Fisher and the Boeing test crew with B-52H Stratofortress 61-023. (Boeing)
Charles F. Fisher at left,  and the Boeing test crew with B-52H Stratofortress 61-023. (Boeing)

The B-52H is a sub-sonic, swept wing, long-range strategic bomber. It has a crew of five. The airplane is 159 feet, 4 inches (48.6 meters) long, with a wing span of 185 feet (56.4 meters). It is 40 feet, 8 inches (12.4 meters) high to the top of the vertical fin. Maximum Takeoff Weight (MTOW) is 488,000 pounds (221,353 kilograms).

There are eight Pratt & Whitney TF33-PW-3 turbofan engines mounted in two-engine pods suspended under the wings on four pylons. Each engine produces a maximum of 17,000 pounds of thrust (75.620 kilonewtons). The TF-33 is a two-spool axial-flow turbofan engine with 2 fan stages, 14-stage compressor stages (7 stage intermediate pressure, 7 stage high-pressure) and and 4-stage turbine (1 stage high-pressure, 3-stage low-pressure). The engine is 11 feet, 10 inches (3.607 meters) long, 4 feet, 5.0 inches (1.346 meters) in diameter and weighs 3,900 pounds (15,377 kilograms).

The B-52H can carry approximately 70,000 pounds (31,750 kilograms) of ordnance, including free-fall bombs, precision-guided bombs, thermonuclear bombs and cruise missiles, naval mines and anti-ship missiles.

The bomber’s cruise speed is 520 miles per hour (837 kilometers per hour) and its maximum speed is 650 miles per hour (1,046 kilometers per hour) at 23,800 feet (7,254 meters) at a combat weight of 306,350 pounds. Its service ceiling is 47,700 feet (14,539 meters) at the same combat weight. The unrefueled range is 8,000 miles (12,875 kilometers).

With inflight refueling, the Stratofortress’s range is limited only by the endurance of its five-man crew.

The B-52H is the only version still in service. 102 were built and as of June 2019, 76 are still in service. Beginning in 2013, the Air Force began a fleet-wide technological upgrade for the B-52H, including a digital avionics and communications system, as well as an internal weapons bay upgrade. The bomber is expected to remain in service until 2040.

Boeing B-52H-170-BW Stratofortress 61-023 taxiing at Minot Air Force Base, North Dakota. (Senior Airman Cassandra Jones, U.S. Air Force)
Boeing B-52H-170-BW Stratofortress 61-023 taxiing at Minot Air Force Base, North Dakota. (Senior Airman Cassandra Jones, U.S. Air Force)

© 2016, Bryan R. Swopes

8 January 1944

Lockheed XP-80 prototype, 44-83020, at Muroc AAF, 8 January 1944. (U.S. Air Force)
The Lockheed XP-80 prototype, 44-83020, at Muroc Army Air Field, 8 January 1944. (Lockheed Martin Aeronautics Company)
Milo Burcham
Milo Garrett Burcham

8 January 1944: At Muroc Army Air Field (later to become Edwards Air Force Base), the Lockheed Aircraft Corporation’s chief engineering test pilot, Milo Garrett Burcham, took the prototype Model L-140, the Army Air Forces XP-80 Shooting Star, 44-83020, for its first flight.

Tex Johnston, who would later become Boeing’s Chief of Flight Test, was at Muroc testing the Bell Aircraft Corporation XP-59 Airacomet. He wrote about the XP-80’s first flight in his autobiography:

Early on the morning of the scheduled first flight of the XP-80, busload after busload of political dignitaries and almost every general in the Army Air Force arrived at the northwest end of the lake a short distance from our hangar. Scheduled takeoff time had passed. I was afraid Milo was having difficulties. Then I heard the H.1B fire up, and he taxied by on the lake bed in front of our ramp. What a beautiful bird—another product of Kelly Johnson, Lockheed’s famed chief design engineer—tricycle gear, very thin wings, and a clear-view bubble canopy. Milo gave me the okay sign.

This was the initial flight of America’s second jet fighter, and what a flight it was. Milo taxied along in front of generals and politicians, turned south and applied full power. I could see the spectators’ fingers going in their ears. The smoke and sand were flying as the engine reached full power, and the XP-80 roared down the lake. Milo pulled her off, retracted gear and flaps, and held her on the deck. Accelerating, he pulled up in a climbing right turn, rolled into a left turn to a north heading, and from an altitude I estimated to be 4,000 feet [1,219 meters] entered a full-bore dive headed for the buses. He started the pull-up in front of our hangar and was in a 60-degree climb when he passed over the buses doing consecutive aileron rolls at 360 degrees per second up to 10,000 feet [3,048 meters]. He then rolled over and came screaming back. He shot the place up north and south, east and west, landed and coasted up in front of the spectators, engine off and winding down. I have never seen a crowd so excited since my barnstorming days. I returned to the office and dictated a wire to [Robert M.] Stanley [Chief Test Pilot, Bell Aircraft Corporation]WITNESSED LOCKHEED XP-80 INITIAL FLIGHT STOP VERY IMPRESSIVE STOP BACK TO DRAWING BOARD STOP SIGNED, TEX I knew he would understand.

Tex Johnston: Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1 June 1992, Chapter 5 at Pages 127–128.

A few minor problems caused Burcham to end the flight after approximately five minutes but these were quickly resolved and flight testing continued.

The XP-80 was the first American airplane to exceed 500 miles per hour (805 kilometers per hour) in level flight.

Clarence L. "Kelly" Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson's "Skunk Works" also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautical Company)
Clarence L. “Kelly” Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. Johnson’s “Skunk Works” also designed the F-104 Starfighter, U-2, A-12 Oxcart and SR-71A Blackbird. (Lockheed Martin Aeronautics Company)

The Lockheed XP-80 was designed by Clarence L. “Kelly” Johnson and a small team of engineers that would become known as the “Skunk Works,” in response to a U.S. Army Air Corps proposal to build a single-engine fighter around the de Havilland Halford H.1B Goblin turbojet engine. (The Goblin powered the de Havilland DH.100 Vampire F.1 fighter.)

Lockheed Aircraft Corporation was given a development contract which required that a prototype be ready to fly within just 180 days.

Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed)
Milo Burcham, on the left, shakes hands with Clarence L. Johnson following the first flight of the Lockheed XP-80, 8 January 1944. (Lockheed Martin Aeronautics Co.)

The XP-80 was a single-seat, single-engine airplane with straight wings and retractable tricycle landing gear. Intakes for engine air were placed low on the fuselage, just forward of the wings. The engine exhaust was ducted straight out through the tail. For the first prototype, the cockpit was not pressurized but would be on production airplanes.

As was customary for World War II U.S. Army Air Forces aircraft, the prototype was camouflaged in non-reflective Dark Green with Light Gull Gray undersides. The blue and white “star and bar” national insignia was painted on the aft fuselage, and Lockheed’s winged-star corporate logo was on the nose and vertical fin. Later, the airplane’s radio call, 483020 was stenciled on the fin in yellow paint. The number 20 was painted on either side of the nose in large block letters. Eventually the tip of the nose was painted white and a large number 78 was painted just ahead of the intakes in yellow block numerals. Early in the test program, rounded tips were installed on the wings and tail surfaces. This is how the XP-80 appears today.

Lockheed XP-80 parked at Muroc Dry Lake, 1944 (Lockheed)
The highly-polished Dark Green and Light Gull Gray Lockheed XP-80 prototype parked at Muroc Dry Lake, 1944 (Lockheed Martin Aeronautics Co.)

The XP-80 is 32 feet, 911/16 inches (9.9997 meters) long with a wingspan of 37 feet, ⅞-inch (11.2998 meters) and overall height of 10 feet, 21/16 inches (3.1004 meters). It had a Basic Weight for Flight Test of 6,418.5 pounds (2,911.4 kilograms) and Gross Weight (as actually weighed prior to test flight) of 8,859.5 pounds (4,018.6 kilograms).

The Halford H.1B Goblin used a single-stage centrifugal-flow compressor, sixteen combustion chambers, and single-stage axial-flow turbine. It had a straight-through configuration rather than the reverse-flow of the Whittle turbojet from which it was derived. The H.1B produced 2,460 pounds of thrust (10.94 kilonewtons) at 9,500 r.p.m., and 3,000 pounds (13.34 kilonewtons) at 10,500 r.p.m. The Goblin weighed approximately 1,300 pounds (590 kilograms).

Cutaway illustration of the Halford H.1B Goblin turbojet engine. (FLIGHT and AIRCRAFT ENGINEER)

The XP-80 has a maximum speed of 502 miles per hour (808 kilometers per hour) at 20,480 feet (6,242 meters) and a rate of climb of 3,000 feet per minute (15.24 meters per second). The service ceiling is 41,000 feet (12,497 meters).

Unusual for a prototype, the XP-80 was armed. Six air-cooled Browning AN-M2 .50-caliber machine guns were placed in the nose. The maximum ammunition capacity for the prototype was 200 rounds per gun.

The Halford engine was unreliable and Lockheed recommended redesigning the the fighter around the larger, more powerful General Electric I-40 (produced by GE and Allison as the J33 turbojet). The proposal was accepted and following prototypes were built as the XP-80A.

Lockheed built 1,715 P-80s for the U.S. Air Force and U.S. Navy. They entered combat during the Korean War in 1950. A two-seat trainer version was even more numerous: the famous T-33A Shooting Star.

Lockheed XP-80 Shooting Star 44-83020 was used as a test aircraft and jet trainer for several years. In 1949, it was donated to the Smithsonian Institution. 44-83020 is on display at the Jet Aviation exhibit of the National Air and Space Museum. It was restored beginning in 1976, and over the next two years nearly 5,000 man-hours of work were needed to complete the restoration.

The prototype Lockheed XP-80 Shooting Star, 44-83020, at teh Smithsonian Institution National Air and Space Museum. (NASM)
The prototype Lockheed XP-80 Shooting Star, s/n 140-1001, 44-83020, at the Smithsonian Institution National Air and Space Museum. (NASM)

© 2019, Bryan R. Swopes