Tag Archives: North American Aviation Inc.

1 October 1947

North American Aviation test pilot George S. Welch, flying the first of three XP-86 prototypes, serial number 45-59597. (North American Aviation, Inc.)

1 October 1947: After three years development in which 801,386 engineering hours and 340,594 drafting hours had been expended, the first prototype North American Aviation XP-86 (company designation NA-140), serial number 45-59597, was ready for its first flight at Muroc Dry Lake in the high desert, north of Los Angeles, California.

Completed at North American’s Inglewood plant on 8 August 1947, it was trucked to Muroc in mid-September. It was reassembled, everything was checked out, and after a few taxi tests, company test pilot George S. Welch took off for a initial familiarization flight. Chief Test Pilot Bob Chilton flew chase in an XP-82 Twin Mustang with a company photographer on board. The duration of the first flight was 1 hour, 18 minutes.

Recently completed, the first prototype XP-86, 45-59597, waits inside the North American Aviation plant at Inglewood, California, 14 August 1947. (North American Aviation, Inc.)

During this first flight, George Welch climbed to 35,000 feet (10,668 meters):

“In a little more than ten minutes he had reached 35,000 feet. Leveling out, the test pilot smiled as he watched the indicated airspeed accelerate to 320 knots. He estimated that should be 0.90 Mach number. . . Rolling into a 40 degree dive, he turned west. . . The airspeed indicator seemed to be stuck at about 350 knots. The Sabre was behaving just fine. Then at 29,000 feet, there was a little wing roll. Correcting the roll, George pushed into a steeper dive. The airspeed indicator suddenly jumped to 410 knots and continued to rise. At 25,000 feet, he pulled the Sabre into level flight and reduced power. The wing rocked again and the airspeed jumped back to 390.”

Aces Wild: The Race for Mach 1, by Al Blackburn, Scholarly Resources Inc., Wilmington, Delaware, 1998, at Chapter 5, Pages 144–145.

George Welch was the first to report instrument readings that would be referred to as “Mach jump.” It has been argued that George Welch flew the XP-86 beyond Mach 1 during this flight, breaking the “sound barrier” two weeks before Chuck Yeager did with the Bell X-1 rocketplane. During flight testing, it was firmly established that the XP-86 could reach Mach 1.02–1.04 in a dive, so it is certainly possible that he did so on the Sabre’s first flight.

North American Aviation Model NA-140, the first XP-86 prototype, 45-59597, at Muroc AAF, 1947. (U.S. Air Force)
North American Aviation Model NA-140, the first XP-86 prototype, 45-59597, at Muroc AAF, 1947. (U.S. Air Force)

The XP-86 was unlike any airplane before it. It was the first airplane with a swept wing. After analyzing test data from the Messerschmitt Me 262, North American’s engineers designed a wing with a 35° degree sweepback to its leading edge. The wing tapered toward the tips, and its thickness also decreased from the root to the tip. In order to create a very strong but very thin wing, it was built with a two-layered aluminum skin, instead of ribs and spars, with each layer separated by “hat” sections. The wing sweep allowed high speed shock waves to form without stalling the entire wing.

Cutaway illustration of the XP-86. The speed brake configuation was not used for production aircraft. (North American Aviation, Inc.)

The wing also incorporated leading edge “slats” which were airfoil sections that automatically extended below 290 knots, smoothing the air flow over the wing’s upper surface and creating more lift at slow speeds. Above that speed, aerodynamic forces closed the slats, decreasing drag and allowing for higher speeds. Effectively, the wing could change its shape in flight.

Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. This photograph was taken 14 October 1947. (U.S. Air Force)
This photograph of the XP-86 shows the 35° wing sweep. Test pilot George S. Welch, wearing his distinctive orange helmet, in the cockpit of the prototype XP-86. (North American Aviation, Inc.)

The XP-86 prototypes were 37 feet, 6½ inches (11.443 meters) long with a wingspan of 37 feet, 1–7/16 inches (11.314 meters) and overall height of 14 feet, 9 inches (4.496 meters). The empty weight was 9,730 pounds (4,413.5 kilograms), gross weight, 13,395 pounds (6,075.9 kilograms) and maximum takeoff weight was 16,438 pounds (7,456.2 kilograms).

North American Aviation XP-86 45-59597. (Ray Wagner Collection, San Diego Air & Space Museum Archives, Catalog #: 16_002950)

The XP-86 was initially powered by a General Electric-designed, Chevrolet-built J35-C-3 turbojet which produced 4,000 pounds of thrust. This was soon changed to an Allison J35-A-5. Performance testing was conducted with the Allison engine installed. The J35 was a single-spool, axial-flow turbojet engine with an 11-stage compressor and single-stage turbine. The J35-A-5 was rated at 4,000 pounds of thrust (17.79 kilonewtons) at 7,700 r.p.m. (static thrust, Sea Level). The engine was 14 feet, 0.0 inches (4.267 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,400 pounds (1,089 kilograms).

The three North American Aviation XP-86 prototypes. Front to back, 45-59598, 45-59597 and 45-59599. (National Archives and Records Administration)

The maximum speed of the XP-86 at Sea Level was 0.787 Mach (599 miles per hour, 964 kilometers per hour), 0.854 Mach (618 miles per hour, 995 kilometers per hour) at 14,000 feet (4,267 meters) and 575 miles per hour (925 kilometers per hour) at 35,000 feet (10,668 meters)—0.875 Mach.

The prototype fighter was able to take off at 125 miles per hour (201 kilometers per hour) in just 3,020 feet (920.5 meters) of runway. It could climb to 30,000 feet (9,144 meters) in 12.1 minutes and had a service ceiling of 41,300 feet (12,588 meters).

The end of XP-86 45-59597 at Frenchman Flats, 1953.

XP-86 45-59597 was expended as a target during nuclear weapons tests. On 25 May 1953, it was 1,850 feet from ground zero of Upshot Knothole Grable. The only part still intact was the engine, which was thrown 500 feet.

Upshot Knothole Grable (National Nuclear Security Administration CIC 0315864)
George S. Welch, North American Aviation test pilot, wearing his orange flight helmet. An F-86 Sabre is in the background. (San Diego Air and Space Museum Photo Archives)

George Welch was born George Lewis Schwartz, in Wilmington, Delaware, 10 May 1918. His parents changed his surname to Welch, his mother’s maiden name, so that he would not be effected by the anti-German prejudice that was widespread in America following World War I. He studied mechanical engineering at Purdue, and enlisted in the Army Air Corps in 1939.

George S. Welch is best remembered as one of the heroes of Pearl Harbor. He was one of only two fighter pilots to get airborne during the Japanese surprise attack on Hawaii, 7 December 1941. Flying a Curtiss P-40B Warhawk, he shot down three Aichi D3A “Val” dive bombers and one Mitsubishi A6M2 Zero fighter. For this action, Lieutenant General H.H. “Hap” Arnold recommended the Medal of Honor, but because Lieutenant Welch had taken off without orders, an officer in his chain of command refused to endorse the nomination. He received the Distinguished Service Cross.

During World War II, George Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat, and when North American Aviation approached him to test the new P-51H Mustang, General Arnold authorized his resignation. Welch test flew the P-51, FJ-1 Fury, F-86 Sabre and F-100 Super Sabre. He was killed 12 October 1954 when his F-100A Super Sabre came apart in a 7 G pull up from a Mach 1.5 dive.

North American Aviation F-86-A-NA Sabre 47-630. (North American Aviation, Inc./Chicago Tribune)
An early production aircraft, North American Aviation P-86A-1-NA Sabre 47-630 (s/n 151-38457). (North American Aviation, Inc./Chicago Tribune)

After testing, the North American Aviation XP-86 was approved for production as the F-86A. It became operational in 1949. The first squadron to fly the F-86 held a naming contest and from 78 suggestions, the name “Sabre” was chosen. The F-86 Sabre was in production until 1955 at North American’s Inglewood, California, and Columbus, Ohio, plants. It was also built under license by Canadair, Ltd., Sain-Laurent, Quebec, Canada; the Commonwealth Aircraft Corporation, Port Melbourne, Victoria, Australia; and Mitsubishi Heavy  Industries at Nagoya, Aichi Prefecture, Japan. A total of 9,860 Sabres were built. They served with the United States Air Force until 1970.

XP-86 45-59597 was expended in nuclear weapons tests, Operation Snapper Easy and Snapper Fox, at the Nevada Test Site, Frenchman’s Flat, Nevada, in May 1952. The second and third prototypes, 45-59598 and 45-59599, met similar fates.

© 2017, Bryan R. Swopes

23 September 1943

North American P-51B Mustang in teh full-scale NACA wind tunnel, Langley, Virginia, 23 September 1945. (NASA)
North American Aviation P-51B Mustang fighter in the Full-Scale Tunnel, NACA Langley Memorial Aeronautical Laboratory, Hampton, Virginia, 23 September 1943. (NASA)
Drag test of North American Aviation P-51B-1-NA Mustang 43-12105 in the NACA Full-Scale Tunnel. (NASA)

21 September 1964

North American Aviation XB70A-1-NA 62-001 takes off for the first time, 21 September 1964. (U.S. Air Force)
North American Aviation XB70A-1-NA 62-0001 takes off for the first time, 21 September 1964. (U.S. Air Force)

21 September 1964: The first prototype North American Aviation XB-70A-1-NA Valkyrie, serial number 62-0001, flown by Chief Test Pilot Alvin S. White and Colonel Joseph F. Cotton, U.S. Air Force, made its first flight from Air Force Plant 42, Palmdale, California, to Edwards Air Force Base.

Originally a prototype Mach 3 strategic bomber, 62-0001 (also known as AV-1) and it’s sister ship, XB-70A-2-NA, 62-0207, (AV-2), were built and used by the Air Force and NASA as high-speed research aircraft. The third Valkyrie, XB-70B-NA 62-0208 (AV-3), was never completed.

Major Joseph F. Cotton, USAF, and Alvin S. White, North American Aviation, with the XB-70A Valkyrie. (Autographed photograph courtesy of Neil Corbett, TEST & RESEARCH PILOTS, FLIGHT TEST ENGINEERS)
Colonel Joseph F. Cotton, USAF, and Alvin S. White, North American Aviation, with an XB-70A Valkyrie. (Autographed photograph courtesy of Neil Corbett, TEST & RESEARCH PILOTS, FLIGHT TEST ENGINEERS)

The B-70 was designed as a high-altitude Mach 3 strategic bomber armed with thermonuclear bombs. The XB-70A is 196 feet, 6 inches (59.893 meters) long with a wingspan of 105 feet (32.004 meters) and an overall height of 30 feet, 8 inches (9.347 meters). It weighs 231,215 pounds (104,877 kilograms) empty and has a maximum takeoff weight of 534,792 pounds (242,578 kilograms).

The XB-70’s delta wing had a total area of 6,297 square feet (585.01 square meters). it had a sweep of 58.0° at 25% chord. The angle of incidence was 0° and the wing incorporated 3.0° negative twist. There was no dihedral. (The second XB-70 had 5° dihedral.) The outer wing panels could be lowered as much as 60° to increase longitudinal stability in high speed flight.

The XB-70A was powered by six General Electric YJ93-GE-3 single-spool, axial-flow turbojet engines, which used an 11-stage compressor and two-stage turbine. The engine required a special heat-resistant JP-6 fuel. It had a maximum continuous power rating of 28,000 pounds of thrust (124.55 kilonewtons) at 6,825 r.p.m. The YJ93-GE-3 was 19 feet, 8.3 inches (6.002 meters) long, 4 feet, 6.15 inches (1.375 meters) in diameter, and weighed 5,220 pounds (2,368 kilograms).

A Boeing B-52 Stratofortress flies formation with North American Aviation XB-70A Valkyrie 62-0001, approaching the runway at Edwards Air Force Base, California. (U.S. Air Force)

The XB-70A had a maximum speed of Mach 3.1 (2,056 miles per hour, or 3,309 kilometers per hour). At 35,000 feet (10,668 meters), it could reach Mach 1.90 (1,254 miles per hour, or 2,018 kilometers per hour), and at its service ceiling of 75,550 feet (23,012 meters), it had a maximum speed of Mach 3.00 (1,982 miles per hour, or 3,190 kilometers per hour). The planned combat range for the production  bomber was 3,419 miles (5,502 kilometers) with a maximum range of 4,290 miles (6,904 kilometers).

North American Aviation XB-70A Valkyrie 62-0001 made 83 flights with a total of 160 hours, 16 minutes flight time. 62-0001 is on display at the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.

North American Aviation XB-70A Valkyrie 62-0001 lands at Edwards Air Force Base at the end of its first flight, 21 September 1964. (U.S. Air Force)
North American Aviation XB-70A-1-NA Valkyrie 62-0001 just before landing at Runway 4 Right, Edwards Air Force Base, ending of its first flight, 21 September 1964. A Piasecki HH-21B rescue helicopter hovers over the adjacent taxiway. (U.S. Air Force)

© 2018, Bryan R. Swopes

17 September 1959

X-15 56-6670 is carried under the right wing of NB-52A 52-003. Scott Crossfield is in the cockpit of the rocket plane. (NASA)

17 September 1959: After previously making one glide flight, North American Aviation Chief Engineering Test Pilot Albert Scott Crossfield made the first powered flight of an X-15 hypersonic research rocket plane.

Carried aloft under the right wing of an eight-engine Boeing NB-52A Stratofortress bomber, USAF serial number 52-003, the first of three North American Aviation X-15s, 56-6670, was airdropped from 35,000 feet (10,668 meters) over Rosamond Dry Lake, west of Edwards Air Force Base. Launch time was 08:08:48.0 a.m., Pacific Daylight Savings Time (15:08.48.0 UTC).

Scott Crossfiled prepares for a flight in the North American Aviation X-15A
Scott Crossfield prepares for a flight in the North American Aviation X-15A. Crossfield is wearing a conformal (face seal) helmet with his David Clark Co. MC-2 full-pressure suit. (NASA/North American Aviation, Inc.)

The X-15 was designed to use the Reaction Motors XLR-99 rocket engine, but early in the test program that engine was not yet available so two smaller XLR-11 engines were used. This was engine the same type used in the earlier Bell X-1 rocket plane that first broke the sound barrier in 1948. Though producing just one-fourth the thrust of the XLR-99, it allowed the functional testing of the X-15 to proceed.

The X-15’s two Reaction Motors XLR11 engines. (NASA)

Scott Crossfield wrote:

Two minutes after launch I reached 50,000 feet and pushed over in level flight. Then I dropped the nose slightly for a speed run, meanwhile maneuvering the ship through a series of turns and rolls, conscious of a deep rumbling noise of the rocket and a great rush of wind on the fuselage. It was obvious the black bird was in her element at supersonic speeds. She responded beautifully. I stared in fascination at the Mach meter which climbed from 1.5 Mach to 1.8 Mach and then effortlessly to my top speed for this flight of 2.3 Mach or about 1,500 miles and hour. Then, because I was under orders not to take the X-15 wide open, I shut off three of the rocket barrels. As I slowed down, I recalled the agony at Edwards many years before when we had worked for months pushing, calculating, polishing and who knows what else to achieve Mach 2 in the Skyrocket. Now with the X-15 we had reached that speed in three minutes on our first powered flight and I had to throttle back.

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 39 at Pages 362.

X-15A 56-6670 drops from the wing of the B-52 mothership. The vapor trail is from hydrogen peroxide that powers the aircraft power systems. Note the roll to the right as the X-15 drops from the pylon. (NASA)

The X-15 dropped 2,000 feet (610 meters) while Scott Crossfield ignited the two XLR-11 engines and then started “going uphill.” During the 224.3 seconds burn duration, the X-15 reached Mach 2.11 (1,393 miles per hour/2,242 kilometers per hour) and climbed to 52,300 feet (15,941 meters), both slightly higher than planned.

Problems developed when the rocket engine’s turbo pump case failed, and fire broke out in the hydrogen peroxide compartment, engine compartment and in the ventral fin. Crossfield safely landed on Rogers Dry Lake at Edwards Air Force Base. The duration of the flight was 9 minutes, 11.1 seconds. Damage to the rocket plane was extensive but was quickly repaired. 56-6670 flew again 17 October 1959.

Chief Engineering Test Pilot A. Scott Crossfield climbs out of the cockpt of a North American Aviation X-15A hypersonic research rocketplane. (Der Spiegel)

Over the next nine years the three X-15s would make 199 flights, setting speed and altitude records nearly every time they flew, and expanding NASA’s understanding of flight in the hypersonic range. The first two X-15s, 56-6670 and 56-6671, survived the program. 670 is at the Smithsonian Institution National Air and Space museum and 671 is at the National Museum of the United States Air Force.

Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)
Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)

© 2018, Bryan R. Swopes

16 September 1958

North American Aviation NA-246 Sabreliner prototype, N4060K, during its first flight, 16 September 1958. (North American Aviation, Inc.)

16 September 1958: At Palmdale, in the high desert of southern California, the prototype North American Aviation, Inc., Model NA-246 Sabreliner, N4060K, took off on its first flight.

The Sabreliner had been designed and built at North American’s expense to meet the U.S. Air Force specification for the UTX, a twin-engine jet that would be primarily used as a trainer for Air Force pilots in non-flying assignments but who needed to remain proficient. It could also be used as a passenger and cargo transport.

The NA-246 was flown by two pilots and could carry up to four passengers in “club seating.”

In October 1958, the Air Force ordered the Model 265 Sabreliner into production, designated T-39A-1-NA (Serial numbers 59-2868 to -2871). This aircraft could carry up to 7 passengers. In 1962, a commercial variant of the T-39A, the Model 265 Sabreliner, was certified by the Federal Aviation Administration.

The T-39A was 44 feet (13.411 meters) long, with a wingspan of 44 feet, 6 inches (13.564 meters) and overall height of 16 feet (14.874 meters). The wings were swept at 28°. It had an empty weight of approximately 9,250 pounds (4,196 kilograms) and maximum takeoff weight of 17,760 pounds (8,056 kilograms).

The Model 246 prototype was powered by General Electric J85 turbojet engines which produced about 2,000 pounds of thrust (8.90 kilonewtons). The the production T-39A used Pratt & Whitney J60-P-3 engines, rated at 3,000 pounds (13.34 kilonewtons) for takeoff.

The T-39A had a maximum allowable airspeed (VMO) of 350 knots, indicated (KIAS) (403 miles per hour/648 kilometers per hour) from Sea Level to 21,100 feet (6,431 meters). Above that altitude, speed was restricted to 0.77 Mach.

North American Aviation T-39A-1-NA, 62-4478, at the National Museum of the United States Air Force.. (U.S. Air Force)

The prototype was issued an Airworthiness Certificate by the Federal Aviation Administration 25 April 1958. The registration was cancelled 30 June 1970.

© 2019, Bryan R. Swopes