Tag Archives: Edwards Air Force Base

19 June 1947

P-80R speed run
Colonel Boyd flies the Lockheed XP-80R over the 3 kilometer course at Muroc Army Air Field, 19 June 1947. (U.S. Air Force)

19 June 1947: At Muroc Army Airfield (now, Edwards Air Force Base) Colonel Albert Boyd, United States Army Air Forces, set a Fédération Aéronautique Internationale (FAI) World Record for Speed Over a 3 Kilometer Course, with an average speed of 1,003.81 kilometers per hour (623.74 miles per hour).¹ This was not just a class record, but an absolute world speed record.

Col. Boyd flew the Lockheed P-80R Shooting Star, serial number 44-85200, four times over the course, twice in each direction. The record speed was the average of the two fastest consecutive runs. As can be seen in the above photograph, these runs were flown at an altitude of approximately 70 feet (21 meters).

Originally a production P-80A-1-LO Shooting Star, 44-85200 had been converted to the XP-80B, a single prototype for the improved P-80B fighter.

Lockheed P-80A-1-LO shooting Star 44-85004, similar to the fighter being test flown by Richard I. Bong, 6 August 1945. (U.S. Air Force)
A very early production Lockheed P-80A-1-LO Shooting Star, 44-85004. (U.S. Air Force)

The P-80A-1-LO was a single-place, single-engine, low-wing monoplane powered by a turbojet engine. It was a day fighter, not equipped for night or all-weather combat operations. The P-80A was 34 feet, 6 inches (10.516 meters) long with a wingspan of 38 feet, 10½ inches (11.849 meters) and overall height of 11 feet, 4 inches (3.454 meters). The fighter had an empty weight of 7,920 pounds (3,592 kilograms) and a gross weight of 11,700 pounds (5,307 kilograms).

The P-80A-1 was powered by an Allison J33-A-9 or -11 turbojet, rated at 3,850 pounds of thrust (17.126 kilonewtons). It had a maximum speed of 558 miles per hour (898 kilometers per hour) at Sea Level and a service ceiling of 45,000 feet (13,716 meters).

The P-80A was armed with six Browning .50-caliber machine guns grouped together in the nose.

Lockheed P-80B-1-LO Shooting Star 45-8554, 1948. (U.S. Air Force)
Lockheed P-80B-1-LO Shooting Star 45-8554, 1948. (U.S. Air Force)

After modification to the XP-80B configuration, 44-85200 was powered by an Allison J33-A-17 with water/alcohol injection. It was rated at 4,000 pounds of thrust (17.793 kilonewtons). Fuel capacity was reduced by 45 gallons (170 liters) to allow for the water/alcohol tank. This was also the first American-built fighter to be equipped with an ejection seat.

The P-80B was heavier than the P-80A, with an empty weight of 8,176 pounds (3,709 kilograms) and gross weight of 12,200 pounds (5,534 kilograms). Visually, the two variants are almost identical.

The XP-80B had a maximum speed of 577 miles per hour (929 kilometers) per hour at 6,000 feet (1,829 meters), a 19 mile per hour (31 kilometers per hour) increase. The service ceiling increased to 45,500 feet (13,868 meters).

This photograph of XP-80R shows the cut-down windscreen an canopy, recontoured leading edges and the NACA-designed engine intakes. (U.S. Air Force)
This photograph of XP-80R shows the cut-down windscreen and canopy, re-contoured wing leading edges and the low-drag, NACA-designed engine intakes. (U.S. Air Force)

44-85200 was next modified to the XP-80R high-speed configuration. The canopy was smaller, the wings were shortened and their leading edges were re-contoured. In its initial configuration, the XP-80R retained the J33-A-17 engine, and incorporated new intakes designed by the National Advisory Committee for Aeronautics (NACA).

The initial performance of the XP-80R was disappointing. The intakes were returned to the standard shape and the J33-A-17 was replaced by a J33-A-35 engine. This improved J33 would be the first turbojet engine to be certified for commercial transport use (Allison Model 400). It was rated at 5,200 pounds of thrust (23.131 kilonewtons) at 11,750 r.p.m. at Sea Level, and 5,400 pounds of thrust (24.020 kilonewtons) with water/methanol injection.

The J33 was a single-spool turbojet with a single-stage centrifugal-flow compressor, 14 combustion chambers, and a single-stage axial-flow turbine. The J33-A-35 had a maximum diameter of 4 feet, 1.2 inches (1.250 meters) and was 8 feet, 8.5 inches (2.654 meters) long. It weighed 1,795 pounds (814 kilograms).

Lockheed P-80R 44-85200 at the National Museum of the United States Air Force
Lockheed P-80R 44-85200 at the National Museum of the United States Air Force

Technicians who modified the XP-80R at Lockheed Plant B-9 Production Flight Test Center, Metropolitan Airport, Van Nuys (just a few miles west of the main plant in Burbank). nicknamed the modified Shooting Star “Racey.”

Lockheed XP-80R 44-85200 is in the collection of the National Museum of the United States Air Force at Wright-Patterson Air Force Base, Ohio.

DAYTON, Ohio -- Lockheed P-80R at the National Museum of the United States Air Force. (U.S. Air Force photo)
Lockheed P-80R 44-85200 at the National Museum of the United States Air Force.

At the time of the speed record flight, Colonel Boyd was chief of the Flight Test Divison at Wright Field, Dayton, Ohio.

Albert Boyd was born 22 November 1906 at Rankin, Tennessee, the first of three sons of Kester S. Boyd a school night watchman, and Mary Eliza Beaver Boyd. In 1924, Boyd graduated from high school in Asheville, North Carolina, then attended Buncombe Junior College in Asheville.

Boyd was one of the most influential officers to have served in the United States Air Force. He entered the U.S. Army Air Corps as an aviation cadet 27 October 1927. After completion of flight training at Maxwell Field, Alabama, Boyd was commissioned as a second lieutenant, Air Corps Reserve, 28 February 1929, and as a second lieutenant, Air Corps, 2 May 1929.

Lieutenant Boyd married Miss Anna Lu Oheim at San Antonio, Texas, 8 September 1933. She was the daughter of Mr. and Mrs. G.F. Oheim of New Braunfels, Texas, (1907–1981).

He was promoted to 1st lieutenant 1 October 1934. Lieutenant Boyd served as a flight instructor at Maxwell Field, Alabama, and then Brooks, Kelly and Randolph Fields in Texas.

In 1934, 1st Lieutenant Boyd was assigned as engineering and operations officer at Chanute Field, Rantoul, Illinois. He completed the Air Corps technical School and the Engineer Armament Course. On 24 July 1936, Boyd was promoted to the temporary rank of captain. This rank became permanent 2 May 1939. In 1939 he was assigned to the Hawaiian Air Depot as assistant engineering officer, and was promoted to major (temporary), 15 March 1941. He and Mrs. Boyd lived in Honolulu. His Army salary was $3,375 per year. In December 1941, he became the chief engineering officer.

On 5 January 1942, Major Boyd was promoted to lieutenant colonel (temporary) and rated a command pilot. Following the end of World War II, Boyd reverted to his permanent rank of major, 2 May 1946.

In October 1945, Major Boyd was appointed acting chief of the Flight Test Division at Wright Field. He became chief of the division, October 1945, and also flew as an experimental test pilot. Boyd believed that it was not enough for Air Force test pilots to be superior pilots. They needed to be trained engineers and scientists in order to properly evaluate new aircraft. He developed the Air Force Test Pilot School and recommended that flight testing operations be centered at Muroc Field in the high desert of southern California, where vast open spaces and excellent flying conditions were available. He was the first commander of the Air Force Flight Test Center.

Colonel Albert G. Boyd with XP-80R 44-85200 (U.S. Air Force)
Colonel Albert G. Boyd with the Lockheed XP-80R, 44-85200. (U.S. Air Force)

When Brigadier General Boyd took command of Muroc Air Force Base in September 1949, he recommended that its name be changed to honor the late test pilot, Glen Edwards, who had been killed while testing a Northrop YB-49 near there, 5 June 1948. Since that time the airfield has been known as Edwards Air Force Base.

Major General Albert Boyd, United States Air Force
Major General Albert Boyd, United States Air Force.

In February 1952, General Boyd was assigned as vice commander of the Wright Air Development Center, and commander, June 1952. His final assignment on active duty was as deputy commander of the Air Research and Development Command at Baltimore, Maryland, from 1 August 1955.

From 1947 until he retired in 1957 as a major general, Albert Boyd flew and approved every aircraft in use by the U.S. Air Force. By the time he retired, he had logged over 21,120 flight hours in more than 700 different aircraft. He had been awarded the Legion of Merit, the Distinguished Flying Cross and the Distinguished Service Medal.

Major General Albert Boyd retired from the Air Force 30 October 1957 following 30 years of service.

General Boyd died at Saint Augustine, Florida, 18 September 1976, at the age of 69 years. He is buried at the Arlington National Cemetery.

¹ FAI Record File Number 9863

© 2018, Bryan R. Swopes

15 June 1969

Lockheed C-5A Galaxy 66-8304, the second one built, during a test flight near Edwards AFB. (U.S. Air Force)

15 June 1969: At Edwards Air Force Base, California, the second Lockheed C-5A Galaxy transport, 66-8304, set several records, including the heaviest takeoff weight, 762,800 pounds (346,000 kilograms), and the heaviest landing weight, 600,000 pounds (272,155 kilograms).

The Dayton Daily News reported:

C-5 Galaxy Heaviest Ever Flown

     The world’s largest airplane, the Air Force’s Lockheed C-5 Galaxy, took off weighing more than three-quarter of a million pounds Sunday, the heaviest weight ever flown in an aircraft.

     The flight was made at Edwards Air Force Base, Calif., as a routine step in the continuing C-5 test program, according to Aeronautical Systems Division officials at Wright-Patterson AFB, where the C-5 program is managed.

     THE PLANE WEIGHED 762,000 pounds at takeoff. This included 325,000 pounds for the plane itself, 50,000 pounds of test equipment, 233,000 pounds of fuel, and 154,000 pounds of water ballast simulating cargo.

     Previously the C-5 had taken off at a record weight of 728,100 pounds.

     THE HEAVYWEIGHT was the No. 2 C-5, which flew from Marrietta, Ga., where teh planes are built by the Lockheed Georgia Co., to Edwards.

      Meantime, C-5 No. 5, which will come to Wright-Patterson next year, has made its maiden flight at Dobbins AFB, Ga.

     The big transport plane flew for an hour and 25 minutes over north Georgia last Thursday.

      THE PLANE IS SCHEDULED to arrive at ASD’s directorate of flight test for all-weather testing in March, 1970.

Dayton Daily News, Vol. 92, No. 281, Monday, June 16, 1969, at Page 3, Column 1

Lockheed C-5A Galaxy 66-8304 arrived at The Boneyard, 2004. It was the fifth C-5 to be retired. (Phillip Michaels via AMARC)
Lockheed C-5A Galaxy 66-8304 arrived at The Boneyard, 2004. It was the fifth C-5 to be retired. (Phillip Michaels/AMARC)
Lockheed C-5A Galaxy 66-8304 in teh reclamation area at Davis-Monthan Air Force Base, Tucson, Arizona. (Phillip Michaels/AMARC)
Lockheed C-5A Galaxy 66-8304 in the reclamation area at Davis-Monthan Air Force Base, Tucson, Arizona. (Phillip Michaels/AMARC)

© 2015, Bryan R. Swopes

8 June 1959, 16:38:40 GMT

Scott Crossfield prepares for a flight in the North American Aviation X-15A.

8 June 1959: At Edwards Air Force Base, California, North American Aviation’s Chief Engineering Test Pilot, A. Scott Crossfield, made the first flight of the X-15A hypersonic research rocketplane.

56-6670 was the first of three X-15s built for the U.S. Air Force and NASA. It was airdropped from a Boeing NB-52A Stratofortress, 52-003, at 37,550 feet (11,445 meters) over Rosamond Dry Lake at 08:38:40 a.m, Pacific Daylight Time.

This was an unpowered glide flight to check the flying characteristics and aircraft systems, so there were no propellants or oxidizers aboard, other than hydrogen peroxide which powered the pumps and generators.

The aircraft reached 0.79 Mach (522 miles per hour, 840 kilometers per hour) during the 4 minute, 56.6 second flight.

North American Aviation Chief Engineering Test Pilot Albert Scott Crossfield in the cockpit of X-15A 56-670 before a flight. (NASA)
North American Aviation Chief Engineering Test Pilot Albert Scott Crossfield in the cockpit of an X-15 before a flight. (LIFE Magazine via Jet Pilot Overseas)

In his autobiography, Scott Crossfield described the first flight:

“Three” . . . “Two” . . . “One” . . .

“DROP”

Inside the streamlined pylon, a hydraulic ram disengaged the three heavy shackles from the upper fuselage of the X-15. They were so arranged that all released simultaneously, and if one failed they all failed. The impact of the release was clearly audible in the X-15 cockpit. I heard a loud “kerchunk.”

X-15A 56-6670 under the wing of NB-52A 52-003 at high altitude. Scott Crossfield is in the cockpit of the rocketplane. Air Force Flight Test Center History Office, U.S. Air Force)
X-15A 56-6670 under the wing of NB-52A 52-003 at high altitude. Scott Crossfield is in the cockpit of the rocketplane. (Air Force Flight Test Center History Office, U.S. Air Force)

The X-15 hung in its familiar place beneath the pylon for a split second. Then the nose dipped sharply down and to the right more rapidly than I had anticipated. The B-52, so long my constant companion, was gone. The X-15 and I were alone in the air and flying 500 miles an hour. In less than five minutes I would be on the ground. . . .

There was much to do in the first hundred seconds of flight. First I had to get the “feel” of the airplane, to make certain it was trimmed out for landing just as any pilot trims an airplane after take-off or . . . when dwindling fuel shifts the center of gravity. Then I had to pull the nose up, with and without flaps, to feel out the stall characteristics, so that I would know how she might behave at touchdown speeds . . . My altimeter unwound dizzily: from 24,000 to 13,000 feet in less than forty seconds. . . .

X-15A 56-6670 drops from the wing of the B-52 mothership. This is a glide flight as there is no frost from cryogenic propellants showing of the fuselage. The vapor trail is from hydrogen peroxide that powers the aircraft power systems. Note the roll to the right as the X-15 drops from the pylon. (NASA)
X-15A 56-6670 drops from the wing of the B-52 mothership, 8 June 1959. The vapor trail is from venting hydrogen peroxide used to power the aircraft pumps and generators. Note the roll to the right as the X-15 drops away from the Stratofortress. (NASA)

The desert was coming up fast. At 600 feet altitude I flared out. . . .

In the next second without warning the nose of the X-15 pitched up sharply. It was a maneuver that had not been predicted by the computers, an uncharted area which the X-15 was designed to explore. I was frankly caught off guard. Quickly I applied corrective elevator control.

The nose went down sharply. But instead of leveling out, it tucked down. I applied reverse control. The nose came up but much too far. Now the nose was rising and falling like a skiff in a heavy sea. Although I was putting in maximum control I could not subdue the motions. The X-15 was porpoising wildly, sinking toward the desert at 200 miles an hour. I would have to land at the bottom of an oscillation, timed perfectly; otherwise, I knew, I would break the bird. I lowered the flaps and the gear. . . .

. . . With the next dip I had one last chance and flared again to ease the descent. At that moment the rear skids caught on the desert floor and the nose slammed over, cushioned by the nose wheel. The X-15 skidded 5,000 feet across the lake, throwing up an enormous rooster tail of dust. . . .

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield and Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960, Chapter 37 at Pages 338–342.

This photograph shows the second North American Aviation X-15A, 56-6671, flaring to land on Rogers Dry Lake, Edwards Air Force Base, California The rear skids are just touching down. The white patches on the aircraft's belly is frost from residual cryogenic propellants remaining in its tanks. (U.S. Air Force)
This photograph shows the second North American Aviation X-15A, 56-6671, flaring to land on Rogers Dry Lake, Edwards Air Force Base, California. The rear skids are just touching down. The white patches on the aircraft’s belly are frost from residual cryogenic propellants remaining in its tanks after a powered flight. (U.S. Air Force)

Before the drop, it was discovered that the aircraft’s Stability Augmentation System was inoperative in pitch mode. During the flight it was found that the hydraulic-assisted flight control system was responding too slowly to Crossfield’s inputs. Engineers analyzed the problem and increased the hydraulic system pressure. The problem never recurred.

Scott Crossfield was the world’s most experienced rocketplane pilot with 82 rocketplane flights before the X-15 program. “. . . he was intimately involved in the design of the aircraft and contributed immensely to the success of the design.”

At The Edge Of Space, by Milton O. Thompson, Smithsonian Institution Press, 1992, Introduction, at Page 3.

North American Aviation X-15A 56-6670 made the first glide flight and the first and last powered flights of the X-15 Program. It made a total of 82 of the 199 X-15 flights. 56-6670 is in the collection of National Air and Space Museum at Washington, D.C.

A. Scott Crossfield, wearing a David Clark Co. XMC-2 full-pressure suit, which he helped to design and test, with the first of three North American X-15s, 56-6670. (North American Aviation, Inc.)

© 2015, Bryan R. Swopes

5 June 1948

Northrop YB-49 42-102368. (U.S. Air Force)

5 June 1948: Flying at 40,000 feet (12,192 meters), north of Muroc Air Force Base, California, the second Northrop YB-49 “flying wing,” serial number 42-102368, was undergoing stall recovery performance testing with a crew of five aboard. The pilot was Major Daniel A. Forbes, Jr., United States Air Force, and the co-pilot was Captain Glen W. Edwards.

The aircraft suffered a catastrophic structural failure with the outer wing panels tearing off. The experimental airplane crashed approximately 10 miles (16 kilometers) east of the small desert town of Mojave. The entire crew, which included 1st Lieutenant Edward L. Swindell, flight engineer, and civilian engineers Charles H. LaFountain and Clare C. Lesser, were killed.

Northrop YRB-49A 42-102369, the sole six-engine reconnaissance prototype. Note the engine mounted in a pod below the wing’s leading edge. (U.S. Air Force)

The YB-49 was an experimental jet engine-powered bomber, modified from a propeller-driven Northrop XB-35. It was hoped that the all-wing design would result in a highly efficient airplane because of its very low drag characteristics. However, the design could be unstable under various flight conditions.

A few months after the crash, the first YB-49 was destroyed in a taxiing accident and the project cancelled. It would be 41 years before the concept would be successful with the Northrop B-2 Spirit.

Northrop YB-49 42-102367. (U.S. Air Force)

42-102367 had been converted from the second YB-35 pre-production test aircraft. The original Flying Wing’s four Pratt & Whitney Wasp Major (R-4360-21) radial engines were replaced by eight Allison J35-A-15 turbojet engines and several aerodynamic improvements were made. The change to jet power  increased the airplane’s speed by about 100 miles per hour (161 kilometers per hour) and significantly reduced the vibrations caused by the reciprocating engines, drive shafts and counter-rotating propellers.

The YB-49 was a very unusual configuration for an aircraft of that time. There was no fuselage or tail control surfaces. The crew compartment, engines, fuel, landing gear and armament was contained within the wing. Air intakes for the turbojet engines were placed in the leading edge of the wing. The exhaust nozzles were at the trailing edge. Four small vertical fins for improved yaw stability were also at the trailing edge.

The fins were likely too small. Test pilots complained about the airplane’s instability, which made it difficult to maintain course or altitude. A stability augmentation system was required.

Northrop YB-49 (U. S. Air Force)

The YB-49 had a length of 53 feet, 1 inch (16.180 meters), wingspan of 172 feet, 0 inches (52.426 meters) and overall height of 15 feet, 2 inches (4.623 meters). It weighed 88,442 pounds (40,117 kilograms) empty, and its maximum takeoff weight was 193,938 pounds (87,969 kilograms).

The Wing defined the airplane. It had an aspect ratio of 7.4:1. The wing’s root chord was 37 feet, 6 inches (11.430 meters). The wing was 7 feet, 1.5 inches (2.172 meters) thick at the root. The tip chord was 9 feet, 4 inches (2.844 meters). There was 0° angle of incidence at the root, -4° at the wing tips, and 0° 53′ dihedral. The leading edge was swept aft 26° 57′ 48″, and the trailing edge, 10° 15′ 22″. The wing’s total area was 4,000 square feet (371.6 square meters).

Northrop YB-49

The YB-49 was powered by eight General Electric-designed, Allison Engine Company-built J35-A-15 engines. The J35 was a single-spool, axial-flow turbojet engine with an 11-stage compressor section and single-stage turbine. The J35-A-15 was rated at 3,270 pounds of thrust (14.55 kilonewtons) at 7,400 r.p.m., Normal Power, and a Maximum (Military Power) rating of 3,750 pounds of thrust (16.68 kilonewtons) at 7,700 r.p.m. The engine was 14 feet, 0.0 inches (4.267 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,400 pounds (1,089 kilograms).

Cruise speed for the YB-49 was 429 miles per hour (690 kilometers per hour). Its maximum speed 499 miles per hour (802 kilometers per hour) at 18,000 feet (5,486 meters) was restricted by Mach number. The airplane could climb from Sea Level to 30,000 feet (9,144 meters) in 21.0 minutes. It had a service ceiling of 49,700 feet (15,149 meters). The YB-49 had a combat radius of 1,611 miles (2,593 kilometers) at 420 miles per hour (676 kilometers per hour), carrying a 10,000 pound (4,536 kilogram) bomb load.

The YB-49 had no defensive armament. It could carry a maximum bomb load of 16,000 pounds (7,257 kilogram) in its internal bomb bay. (Turbulence resulting from open bomb bays significantly decreased bombing accuracy.)

Only two Northrop YB-49s were built. They were tested by Northrop and the Air Force for nearly two years. A third XB-35, 42-102369, was converted to a reconnaissance variant with an additional two engines mounted in pods below the leading edge of the wing, and designated YEB-49A.Although an additional nine YB-35s were ordered converted, the B-49 was not placed into production.

Northrop YB-49.
Daniel H, Forbes, Jr., 1940

Daniel Hugh Forbes, Jr., was born at Carbondale, Kansas, 20 June 1920. He was the son of Daniel Hugh Forbes, a farmer, and Hattie Rundle Forbes. He attended North High School in Wichita Kansas, and then the Kansas State College at Manhattan, Kansas,

Maj. Daniel Forbes, Jr., USAF

Daniel Forbes enlisted in the United States Army as an aviation cadet at Fort Riley, Kansas, 23 May 1941. On 9 January 1942, he was commissioned a second lieutenant, Air Reserve. Forbes was promoted to the rank of 1st lieutenant, Army of the United States, 25 August 1942, and to captain, A.U.S., 15 August 1944. On 4 October 1945, he was promoted to major, A.U.S.

Major Forbes married Mrs. Edward C. Winkle (née Hazel Marie Moog), 11 March 1948. Her first husband, a 1st lieutenant assigned to the 314th Infantry Regiment, 79th Infantry Division, was killed in action in France, 1 October 1944. Less than three years later, Mrs. Hughes was a widow again.

Major Daniel Hugh Forbes, Jr., Air Corps, United States Army.

Glen Walter Edwards was born at Medicine Hat, Alberta, Canada, 5 March 1916, the second son of Claude Gustin Edwards, a real estate salesman, and Mary Elizabeth Briggeman Edwards. The family immigrated to the United States in August 1923 and settled near Lincoln, California. He attended Lincoln High School, where he was a member of the Spanish Club and worked on the school newspaper, “El Eco.” He graduated in 1936.

Lt. Glen W. Edwards

Edwards attended Placer Junior College, Auburn, California, before transferring to the University of California, Berkeley. He graduated in 1941 with a Bachelor of Arts (A.B.) degree, and then enlisted in the United States Army as an aviation cadet, 16 July 1941.

Following pilot training, Edwards was commissioned as a second lieutenant, Air Reserve, 6 February 1942. He was promoted to 1st lieutenant, Army of the United States, 16 September 1942. Lieutenant Edwards flew 50 combat missions in the Douglas A-20 Havoc light bomber with the 86th Bombardment Squadron (Light), 47th Bomb Group, in North Africa and fought at the Battle of the Kasserine Pass, 19–24 February 1943. He was next promoted to captain, 28 April 1943. He also flew during the invasion of Sicily, in late 1943.

Two U.S. Army Air Force Douglas A-20B-DL Havoc light bombers, 41-3014 and 41-3134, in Tunisia, 1943. (U.S. Air Force)

Edwards returned to the United States and was assigned to the Pilot Standardization Board, but was then sent to train as a test pilot at Wright Field. Captain Edwards was assigned as a test pilot in 1944 and tested the Northrop XB-35 and Convair XB-36. After World War II came to an end the U.S. Army and Air Corps were demobilized to 1/16 of their peak levels (from 8,200,000 to 554,000). Edwards was retained but reverted to the rank of 1st lieutenant. He had been awarded the Distinguished Flying Cross and the Air Medal with three oak leaf clusters (four awards). He was transferred to the United States Air Force after it was established as a separate service, 18 September 1947.

Glen Edwards was recommended to fly the Bell X-1 rocket plane, but when that assignment went to Chuck Yeager, Edwards was sent to Princeton University, Princeton, New Jersey, to study aeronautical engineering. He earned a masters degree in engineering (M.S.E.) in 1947.

Captain Glen Walter Edwards, Air Corps, United States Army.

Following the crash of the YB-49, Topeka Air Force Base in Kansas was renamed Forbes Air Force Base. Muroc Air Force Base was renamed Edwards Air Force Base in honor of Captain Edwards.

Captains Edwards’ remains were buried at the Lincoln Cemetery, Lincoln, California.

Edwards Air Force Base, California, looking northeast, photographed in 2007. (U.S. Air Force)

Edward Lee Swindell was born at Currituck, North Carolina, 22 April 1916. He was the son of Rudolph Bridgman Swindell, a machinist’s helper at the Portsmouth Navy Yard, and Eula Belle Williams Swindell.

Edward L. Swindell married Miss Edna Irene Hayman, 2 January 1942 at South Mills, North Carolina.

Swindell enlisted in the U.S. Army at Camp Lee, Virginia, 17 March 1942. He was 5 feet, 9 inches (1.75 meters) tall and weighed 156 pounds (70.7 kilograms).

Lieutenant Swindell’s remains were buried at the Forest Lawn Cemetery, Norfolk, Virginia.

Charles H. LaFountain was born 12 June 1925 in New York. He was the son of Leo L. LaFountain and Gladys Ethel Taylor LaFountain. He had served in the United States Navy and was a civilian employee of the Air Force. His remains were buried at the Lake Luzerne Cemetery, Lake Luzerne, New York.

Clare C. Lesser was born 27 June 1925 at Joliet, Illinois. He was the fifth of five children of Henry J. Leser, a worker at a wire mile, and Alvina Leser. Leser served as an ensign in the United States Naval Reserve. Like LaFountain, he was also a civilian employee of the Air Force. His remains were buried at St. John’s Cemetery, Joliet, Illinois.

© 2018, Bryan R. Swopes

4 June 1954

Major Arthur Warren "Kit" Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)
Major Arthur Warren “Kit” Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)

4 June 1954: at Edwards Air Force Base, California, Major Arthur W. “Kit” Murray flew the experimental Bell X-1A research rocketplane to an altitude of 89,810 feet (27,374 meters). He flew high enough that the sky darkened and he was able to see the curvature of the Earth. Newspapers called him “America’s first space pilot.”

The X-1A reached Mach 1.97. Encountering the same inertial coupling instability as had Chuck Yeager, 20 November 1953, though at a lower speed, the X-1A tumbled out of control. The rocket plane lost over 20,000 feet (6,100 meters) altitude before Murray could regain control. For this accomplishment, Major Murray was awarded the Distinguished Flying Cross.

One week earlier, 28 May 1954, Murray had flown the X-1A to an unofficial world record altitude of 90,440 feet (27,566 meters).

Arthur Murray, 1936. (The Argus)

Arthur Warren Murray was born at Cresson, Cambria County, Pennsylvania, 26 December 1918. He was the first of two children of Charles Chester Murray, a clerk, and Elsie Espy Murray.

Arthur Murray attended Huntingdon High School, Huntingdon, Pennsylvania, graduating 4 June 1936, and then studied Juniata College, also in Huntingdon, 1937–1938.

Arthur Murray, 1938. (The Nineteen Thirty-Seven Alfarata)

Kit Murray enlisted in the Field Artillery, Pennsylvania National Guard, 17 November 1939. (Some sources state that he served in the U.S. Cavalry.) Murray had brown hair and blue eyes, was 5 feet, 10 inches (1.78 meters) tall and weighed 150 pounds (68 kilograms). Following the United States’ entry into World War II, Sergeant Murray requested to be trained as a pilot. He was appointed a flight officer (a warrant officer rank), Army of the United States, on 5 December 1942. On 15 October 1943 Flight Officer Murray received a battlefield promotion to the commissioned rank of second lieutenant, A.U.S.

Between 6 January  and 22 October 1943, Murray flew over 50 combat missions in the Curtiss-Wright P-40 Warhawk across North Africa. After about ten months in the Mediterranean Theater, he returned to the United States, assigned as an instructor flying the Republic P-47 Thunderbolt fighter bomber, stationed at Bradley Field, Hartford, Connecticut.

Republic P-47 Thunderbolts at Bradley Field, Connecticut, 9 September 1944. (U.S. Air Force)

Lieutenant Murray married Miss Elizabeth Anne Strelic, who had immigrated from Czechoslovakia with her family as an infant, at Atlantic City, New Jersey, 29 December 1943. They would have six children, and foster a seventh. They later divorced. (Mrs. Murray died in 1980.)

Lieutenant and Mrs. Arthur W. Murray, 1943. (Murray Family Collection)

Murray was promoted to 1st lieutenant, A.U.S., 8 August 1944. His next assignment was as a maintenance officer. He was sent to Maintenance Engineering School at Chanute Field, Rantoul, Illinois, and from there to the Flight Test School at Wright Field, Dayton, Ohio.

Murray was the first test pilot to be permanently assigned to Muroc Army Air Field (later, Edwards Air Force Base). Other test pilots, such as Captain Chuck Yeager, were assigned to Wright Field and traveled to Muroc as necessary.

Murray’s A.U.S. commission was converted to first lieutenant, Air Corps, United States Army, on 19 June 1947, with date of rank retroactive to 15 October 1946. The U.S. Air Force became a separate military service in 1947, and Lieutenant Murray became an officer in the new service.

Major Arthur Warren (“Kit”) Murray, United States Air Force, with a Northrop F-89 Scorpion interceptor, 1954. (The New York Times)

Murray was involved in testing new Air Force fighters such as the Bell P-59 Airacomet, Lockheed P-80 Shooting Star, Republic P-84 Thunderjet, McDonnell XF-88 Voodoo; and the Douglas XB-43 Jetmaster and North American Aviation B-45 Tornado jet bombers. He also flew the experimental aircraft such as the X-1A, X-1B, X-4 and X-5. Murray spent six years at Edwards before going on to other assignments.

Colonel Arthur Warren (“Kit”) Murray, U.S. Air Force.

Later, 1958–1960, Major Murray was the U.S. Air Force project officer for the North American Aviation X-15 hypersonic research rocketplane at Wright Field.

Colonel Murray retired from the U.S. Air Force in 1961. He next worked for Boeing in Seattle, Washington, from 1961 to 1969, and then Bell Helicopter in Texas.

On 4 April 1975, Kit Murray married his second wife, Ms. Ann Tackitt Humphreys, an interior decorator, in Tarrant County, Texas.

Colonel Arthur Warren Murray, United States Air Force (Retired), died at West, Texas, 25 July 2011, at the age of 92 years.

NASA 800, a highly modified Boeing B-29 Superfortress, carries the Bell X-1A to altitude over Edwards AFB. (NASA)
A highly modified Boeing B-29 Superfortress carries the Bell X-1A to altitude over Edwards AFB. (U.S. Air Force)

The Bell X-1A was a follow-on project to the earlier X-1. It was designed and built by the Bell Aircraft Corporation at Buffalo, New York, to investigate speeds above Mach 2 and altitudes above 90,000 feet (27,432 meters). It was carried to altitude by a modified Boeing B-29 Superfortress, then dropped for the research flight.

The rocketplane was 35 feet, 7 inches (10.846 meters) long with a wingspan of 28 feet (8.534 meters) and overall height of 10 feet, 8 inches (3.251 meters). It had an empty weight of 6,880 pounds (3,120.7 kilograms) and gross weight of 16,487 pounds (7,478.3 kilograms).

The X-1A was powered by a Reaction Motors XLR-11-RM-5 four-chamber rocket engine which produced 6,000 pounds of thrust. It had a maximum speed of Mach 2.44 (Yeager) and reached an altitude of 90,440 feet (27,566.1 meters) (Murray).

Bell X-1A 48-1384. (U.S. Air Force)
Bell X-1A 48-1384. (U.S. Air Force)

The X-1A was destroyed by an internal explosion, 20 July 1955.

© 2018, Bryan R. Swopes