Tag Archives: National Aeronautics and Space Administration

17 September 1976

Enterprise rollout at Palmdale, California, 17 September 1976. (Roger Ressmeyer/CORBIS)

17 September 1976. Enterprise (OV-101), the prototype Space Shuttle Orbital Vehicle, was rolled out at the Rockwell International plant at Palmdale, California.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 September 1999

NASA 008, known as “Balls 8,” a modified Boeing RB-52B-10-BO Stratofortress, serial number 52-008, with NASA 824, a Lockheed TF-104G Starfighter, N824NA. The DAST 1 drone is under the bomber’s right wing. (NASA)

16 September 1999: 44 years, 3 months and 6 days after its very first flight, NASA’s airborne launch aircraft, or “mothership,” Balls 8, completed its 1,000th flight.

Balls 8, so-called because of the double zeros in it U.S. Air Force serial number, 52-008, is a Boeing NB-52, modified as a drop ship from its original configuration as an RB-52B-10-BO Stratofortress reconnaissance bomber assigned to the Strategic Air Command. It made its first flight 11 June 1955 and was reassigned from SAC to Edwards Air Force Base to support NASA flight testing operations, 8 June 1959. Balls 8 served NASA until 17 December 2004, when it was replaced by a newer NB-52H Stratofortress.

52-008 was altered at the North American Aviation facility at Air Force Plant 42, Palmdale, California. A pylon was mounted under the bomber’s right wing. A large notch was cut into the trailing edge of the inboard flap for the X-15’s vertical fin. A 1,500 gallon (5,678 liter) liquid oxygen tank was installed in the bomb bay. A station for a launch operator was installed on the upper deck of the B-52 at the former electronic countermeasures position. A series of control panels allowed the panel operator to monitor the X-15’s systems, provide electrical power, and to keep the rocketplane’s liquid oxygen tank full as the LOX boiled off during the climb to launch altitude. The operator could see the X-15 through a plexiglas dome, and there were two television monitors.

The NB-52B was used during the X-15 Program and carried the three hypersonic research aircraft aloft on 159 of their 199 flights. (NB-52A 52-003, The High and Mighty One, made the other 40 launches.) It has also been used to carry the X-24 and HiMat lifting body research aircraft and to launch Pegasus research rockets.

At the time of its retirement, Balls 8 was the oldest B-52 in service, and also the lowest time B-52. It is on display near the north gate at Edwards Air Force Base.

Balls 8, Boeing NB-52B Stratofortress 52-008, as seen from a KC-135A Stratotanker. (NASA)
Balls 8, NASA’s Boeing NB-52B Stratofortress 52-008 “mothership”, as seen from a KC-135A Stratotanker. (NASA)

Of the 744 B-52 Stratofortresses built by Boeing, 50 were B-52Bs and 27 of these were RB-52B reconnaissance bombers.

The airplane was 156 feet, 6.9 inches (47.724 meters) long with a wingspan of 185 feet, 0 inches (56.388 meters) and overall height of 48 feet, 3.6 inches (14.722 meters). The wings were mounted high on the fuselage (“shoulder-mounted”) to provide clearance for the engines which were suspended on pylons. The wings’ leading edges were swept 35°. The bomber’s empty weight was 164,081 pounds (74,226 kilograms), with a combat weight of 272,000 pounds (123,377 kilograms) and a maximum takeoff weight of 420,000 pounds (190,509 kilograms).

Early production B-52Bs were powered by eight Pratt & Whitney J57-P-1W turbojet engines, while later aircraft were equipped with J57-P-19W and J57-P-29W or WA turbojets. The engines were grouped in two-engine pods on four under-wing pylons. The J57 was a two-spool, axial-flow engine with a 16-stage compressor section (9 low- and 7-high-pressure stages) and a 3-stage turbine section (1 high- and 2 low-pressure stages). These engines were rated at 10,500 pounds of thrust (46.71 kilonewtons), each, or 12,100 pounds (53.82 kilonewtons) with water injection.

The B-52B/RB-52B had a cruise speed of 523 miles per hour (842 kilometers per hour). The maximum speed varied with altitude: 630 miles per hour (1,014 kilometers per hour) at 19,800 feet (6,035 meters), 598 miles per hour (962 kilometers per hour) at 35,000 feet (10,668 meters) and 571 miles per hour (919 kilometers per hour) at 45,750 feet (13,945 meters). The service ceiling at combat weight was 47,300 feet (14,417 meters).

Maximum ferry range was 7,343 miles (11,817 kilometers). With a 10,000 pound (4,536 kilogram) bomb load, the B-52B had a combat radius of 3,590 miles (5,778 kilometers). With inflight refueling, the range was essentially world-wide.

This "score board" painted on the side of Balls 8 shows many of the missions that it flew as a "mothership" for NASA. (NASA)
This “score board” painted on the side of Balls 8 shows many of the missions that it flew as a “mothership” for NASA. (NASA)

Defensive armament consisted of four Browning Aircraft Machine Guns, Caliber .50, AN-M3, mounted in a tail turret with 600 rounds of ammunition per gun. These guns had a combined rate of fire in excess of 4,000 rounds per minute. (Eighteen RB-52Bs were equipped with two M24A1 20 mm autocannon in the tail turret in place of the standard four .50-caliber machine guns.)

The B-52B’s maximum bomb load was 43,000 pounds (19,505 kilograms). It could carry a 15-megaton Mark 17 thermonuclear bomb, or two Mark 15s, each with a maximum yield of 3.8 megatons.

Balls 8 lands on a runway marked on Rogers Dry Lake at Edwards Air Force Base, California. The drogue parachute helps to slow the airplane. (NASA)
Balls 8 lands on a runway marked on Rogers Dry Lake at Edwards Air Force Base, California. The drogue parachute helps to slow the airplane. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

27 August 1962, 06:53:14 UTC, T minus Zero

Engine ignition of Mariner 2 Atlas Agena B at LC-12, Cape Canaveral AFS, 2:53 a.m., EST, 27 August 1962. (NASA)

27 August 1962: At 06:53:14 UTC (2:53 a.m., Eastern Daylight Time), Mariner 2 lifted off from Launch Complex 12 at Cape Canaveral Air Force Station, Florida, aboard an Atlas-Agena B launch vehicle. This was the second space probe to be sent to Venus.

Mariner 1 and 2 were identical space probes built by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech), Pasadena, California. The spacecraft were designed to obtain radiometric temperatures of Venus, and to measure the Interplanetary Magnetic Field.

The Mariner 1 mission failed when the launch vehicle veered off course and was destroyed by the Range Safety Officer, 4 minutes, 53 seconds into its flight, 22 July 1962.

Mariner 2 under final inspection. (NASA)

The Atlas Agena B combined an Atlas LV-3A rocket with an Agena B upper stage. The Atlas was derived from the U.S. Air Force SM-65 Atlas intercontinental ballistic missile (ICBM), and was built by the Convair Division of General Dynamics at San Diego, California.

The height of the total vehicle, including the protective shroud encasing Mariner, 103 feet, 5 inches (31.70 meters). The Atlas Agena B first stage was 20.70 meters (67 feet, 11 inches) long, with a maximum diameter of 3.05 meters (10 feet). The maximum width across the booster section was 4.88 meters (16 feet).

The LV-3A is a “1-½ stage” liquid-fueled rocket with three engines. The “half-stage,” was a booster section consisting of two LR89-NA-5 rocket engines. This stage produced approximately 369,800 pounds of thrust (1,645 kilonewtons). The center, or “sustainer,” engine is a LR105-NA-5, rated at 86,800 pounds of thrust (386 kilonewtons). Both engines were built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. The Atlas rocket used liquid oxygen and RP-1 (a highly-refined kerosene) propellant. The LV-3A had a total thrust of 456,587 pounds (2,031 kilonewtons).

The second stage was an Agena B, built by Lockheed Missiles and Space Systems, Sunnyvale, California. This engine was capable of being restarted in orbit. The Agena B was 7.20 meters (23 feet, 7 inches) long and had a maximum diameter of 1.50 meters (4 feet, 11 inches). It was also liquid fueled, but used a hypergolic mixture of nitric acid and UDMH. The single engine was a Bell Aerosystems Company LR81-BA-7, with 16,000 pounds of thrust (71.1 kilonewtons).

The Mariner probe was mounted atop the Agena second stage, enclosed in a protective shroud. Mariner had a gross weight of 447 pounds (202.8 kilograms). The probe was 9 feet, 11 inches long (3.02 meters) long, folded for launch, and 5 feet (1.52 meters) wide. When antennas and the solar panels were fully expanded, the spacecraft was 11 feet, 11 inches (3.63 meters) long and had a span of 16 feet, 6 inches (5.03 meters).

Artist's conception of Mariner 2 in interplanetary space. (NASA)
Artist’s conception of Mariner 2 in interplanetary space. (NASA)

At liftoff, all three main engines were burning. After 2minutes, the two-engine booster assembly was jettisoned and the vehicle continued with the center LR105 sustainer. After 4 minutes, 25 seconds, this engine shut down and the Agena second stage separated. At this point, guidance was lost and the vehicle began to roll, but did not deviate significantly from the planned trajectory. About a minute later, guidance was restored and the mission continued.

The Agena B second stage placed the Mariner in a parking orbit at about 118 kilometers (73.3 miles) altitude. 16 minutes, 20 seconds later, the Agena engine was reignited and  Mariner 2 was then placed on a trajectory planned to take it to Venus.

After 3 months, 17 days, at 19:59:28 UTC, 14 December 1962, the probe passed within 34,773 kilometers (21,607 miles) of Venus and measured the planet’s surface and cloud temperatures. It continued inward across the solar system and came within 105,464,560 kilometers (65,432,640 miles) of the sun.

The last transmission was received at 07:00 UTC, 3 January 1963, 129 days into the mission. Mariner 2 remains in orbit around the sun, circling every 292 days.

Mariner 2, carried alloft by Atlas LV3 179D, accelerates past the gantry, 06:53 UTC, 26 August 1962 (NASA)
The Atlas Agena B, carrying Mariner 2, accelerates toward orbit, 06:53 UTC, 27 August 1962 (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

26 May 1951–23 July 2012

Sally Kristen Ride, Ph.D., Astronaut. (26 May 1951–23 July 2012)
Sally Kristen Ride, Ph.D., Astronaut. (26 May 1951–23 July 2012)

NASA’s Condolences on the Passing of Sally Ride

In a space agency filled with trailblazers, Sally K. Ride was a pioneer of a different sort. The soft-spoken California physicist broke the gender barrier 29 years ago when she rode to orbit aboard space shuttle Challenger to become America’s first woman in space.

“Sally Ride broke barriers with grace and professionalism – and literally changed the face of America’s space program,” said NASA Administrator Charles Bolden. “The nation has lost one of its finest leaders, teachers and explorers. Our thoughts and prayers are with Sally’s family and the many she inspired. She will be missed, but her star will always shine brightly.”

“Sally was a personal and professional role model to me and thousands of women around the world,” said NASA Deputy Administrator Lori Garver. “Her spirit and determination will continue to be an inspiration for women everywhere.”

Ride’s contribution to America’s space program continued right up until her death at age 61 this week. After two trips to orbit aboard the shuttle, she went on an award-winning academic career at the University of California, San Diego, where her expertise and wisdom were widely sought on matters related to space. She holds the distinction of being the only person to serve as a member of both investigation boards following NASA’s two space shuttle accidents. She also served as a member of the Review of U.S. Human Spaceflight Plans Committee, also known as the Augustine Committee, in 2009, which informed many of the decisions about NASA’s current human spaceflight programs.

However, Ride’s place in history was assured on June 18, 1983 when she rocketed into space on Challenger’s STS-7 mission with four male crewmates.

“The fact that I was going to be the first American woman to go into space carried huge expectations along with it,” Ride recalled in an interview for the 25th anniversary of her flight in 2008. “That was made pretty clear the day that I was told I was selected as a crew. I was taken up to Chris Kraft’s office. He wanted to have a chat with me and make sure I knew what I was getting into before I went on the crew. I was so dazzled to be on the crew and go into space I remembered very little of what he said.”

“On launch day, there was so much excitement and so much happening around us in crew quarters, even on the way to the launch pad,” Ride said. “I didn’t really think about it that much at the time . . . but I came to appreciate what an honor it was to be selected to be the first to get a chance to go into space.”

Ride joined NASA as part of the 1978 astronaut class, the first to include women. She and five other women, along with 29 men, were selected out of 8,000 applicants. The class became known as the “Thirty-Five New Guys” and reported to the Johnson Space Center the next summer to begin training. Ride trained for five years before she and three of her classmates were assigned to STS-7. The six-day mission deployed two communications satellites and performed a number of science experiments.

Following that historic flight, Ride returned to space on another shuttle mission, STS-41G in 1984. The 8-day mission deployed the Earth Radiation Budget Satellite, conducted scientific observations of Earth, and demonstrated potential satellite refueling techniques. She was assigned to a third flight, but transitioned to a role on the Rogers Commission that investigated the Challenger accident after that shuttle was lost in January 1986. When the investigation was completed, she accepted a job as a special assistant to the NASA administrator for long range and strategic planning.

Ride left NASA in August 1987 to join the faculty at the University of California, San Diego, as a professor of physics and director of the University of California’s California Space Institute. In 2001, she founded her own company, Sally Ride Science, to pursue her long-time passion of motivating girls and young women to pursue careers in science, math and technology.

A native of Los Angeles, Ride graduated from high school there in 1968 and enrolled at Stanford University. At Stanford, she earned four degrees, including a doctorate in physics in 1978. She also was an accomplished athlete who played varsity tennis at Stanford after being nationally ranked as a youth.

Ride received numerous honors and awards during the course of her career. Most notably, she was inducted into the National Women’s Hall of Fame and the Astronaut Hall of Fame, and received the Jefferson Award for Public Service, the von Braun Award, the Lindbergh Eagle, and the NCAA’s Theodore Roosevelt Award.

The above is from the official NASA web statement at 

http://www.nasa.gov/topics/people/features/ride.html

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather