Tag Archives: Geoffrey de Havilland

17 April 1923

Lieutenant Harold R. Harris, United States Army Air Service, 1922.
First Lieutenant Harold Ross Harris, Air Service, United States Army, 1922.

17 April 1923: At Wilbur Wright Field, Dayton, Ohio, First Lieutenant Harold Ross Harris set two Fédération Aéronautique Internationale (FAI) World Speed Records, flying a modified de Havilland XDH-4L powered by a Hall-Scott Liberty 375 engine. Lieutenant Harris averaged 184.03 kilometers per hour (114.35 miles per hour) over a 1,500 kilometer (932.1 miles) closed circuit,¹ and 183.82 kilometers per hour (114.22 miles per hour) over a 2,000 kilometer (1,242.7 mile) course. ²

Harold R. Harris was an important figure in the development of aircraft following World War I. He served as Engineering Officer for the U.S. Army at McCook Field and flew many experimental aircraft, setting records for speed and altitude, and worked on the development of airplanes, engines and other equipment. Harris was the first man to use a parachute to escape an airplane during an actual in-flight emergency.

In civil aviation, Harris was an executive with the company that would become Pan American World Airways. During World War II, he was chief of staff of the Air Transport Command, retiring with the rank of brigadier general, and then returning to commercial aviation as a vice president of Pan Am and later president of Northwest Airlines.

de Havilland XDH-4L A.S. 64593, FAI World Speed record holder. (FAI)

The XDH-4L was a variant of the Airco DH.4, designed by Geoffrey de Havilland. It was a two-place, single-engine biplane intended as a bomber, but the type served in virtually every capacity during World War I and the years following. At McCook Field, American-built DH-4s were commonly used as test beds for engines and other aeronautical equipment.

The standard Airco DH.4 had a crew of two. It was 30 feet, 8 inches (9.347 meters) long with a wingspan of 43 feet, 4 inches (13.208 meters) and height of 11 feet (3.353 meters). Empty weight was 2,387 pounds (1,085 kilograms) and loaded weight was 3,472 pounds (1,578 kilograms). British-built DH.4s were powered by a 1,240.54-cubic-inch-displacement (20.33 liter) liquid-cooled Rolls-Royce Eagle overhead cam 60° V-12 engine which produced 375 horsepower. A gear-reduction system kept propeller r.p.m. below engine speed for greater efficiency.

American-built DH.4 airplanes were produced by the Boeing Airplane Company, Dayton-Wright Airplane Company, Fisher Body Corporation, and Standard Aircraft Corporation. Most were powered by the Liberty L12 engine.

Major Henry H. Arnold standing beside the first Liberty 12 aircraft engine turned out for war use. “Hap” Arnold would later hold the 5-star rank of General of the Army and General of the Air Force. (U.S. Air Force)

The Liberty L12 aircraft engine was designed by Jesse G. Vincent of the Packard Motor Car Company and Elbert J. Hall of the Hall-Scott Motor Company. It was a  water-cooled, normally-aspirated, 1,649.336-cubic-inch-displacement (27.028 liter) Liberty L-12 single overhead cam (SOHC) 45° V-12 engine with a compression ratio of 5.4:1. The Liberty produced 408 horsepower at 1,800 r.p.m. The L-12 as a right-hand tractor, direct-drive engine and it turned turned a two-bladed fixed-pitch wooden propeller. The Liberty 12 was 5 feet, 7.375 inches (1.711 meters) long, 2 feet, 3.0 inches (0.686 meters) wide, and 3 feet, 5.5 inches (1.054 meters) high. It weighed 844 pounds (383 kilograms). This engine was produced by Ford Motor Company, as well as the Buick and Cadillac Divisions of General Motors, The Lincoln Motor Company (which was formed by Henry Leland, the former manager of Cadillac, specifically to manufacture these aircraft engines), Marmon Motor Car Company and Packard. Hall-Scott was too small to produce engines in the numbers required.

Following World War I, many DH-4s were rebuilt by Boeing and Atlantic Aircraft. An improved version, the DH-4M, used a tubular steel framework instead of the usual wood construction. DH-4s remained in service with the United States Army as late as 1932.

De Havilland XDH-4L, U.S. Army Air Service  serial number A.S. 64593, was used for engineering tests at McCook Field. It carried project number P193 painted on its rudder. At the time of the world speed records, it was powered by a Hall-Scott Liberty 375, a 375 horsepower version of the Liberty V-12 engine. The rear cockpit was faired over and a 185 gallon (700.3 liter) fuel tank installed for long range flights.

¹ FAI Record File Number 9318

² FAI Record File Number 9319

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

1909: De Havilland No. 1

De Havilland No. 1 at Seven Barrows, Hampshire, 1909. (BAE Systems)

History has forgotten the actual date—perhaps because he was no one of  any importance at the time—but one day in the Fall or Winter of 1909, Geoffrey de Havilland, an automotive engineer, took off from Seven Barrows, Hampshire, England, in an airplane of his own design. Today, that airplane is known as the de Havilland No. 1.

De Havilland had borrowed £1,000 from his grandfather, and together with fellow engineer Francis Trounson Hearle, built an airplane.

The de Havilland No. 1 was a single-engine, single-place, three-bay biplane in a pusher configuration. It had a forward elevator (canard), and an aft-mounted rudder and adjustable horizontal stabilizer. Ailerons were mounted on the upper wing.

The structure of the airplane was built of American white wood (which proved to be a poor choice) and was braced with steel wires. The fuselage was an open girder tapered at each end. It was built of 1½″ × 1½″ (3.81 × 3.81 centimeters) longitudinals with 1¼″ × ¼″ (3.175 × 0.635 centimeter) cross braces from the engine aft. It had a cross section at the widest point of 2′4″ x 2′0″ (0.711 × 0.610 meters). The lower longitudinals were reinforced with angled steel beneath the engine

The de Havilland was 29 feet, 0 inches (8.839 meters) long with a wingspan of 36 feet, 0 inches (10.973 meters). Both wings had a chord of 6 feet, 0 inches (1.829 meters) and the vertical gap was also 6 feet, 0 inches. The wings were not staggered. The airplane weighed 850 pounds ( kilograms).

Three-view illustration of the de Havilland No. 1. (FLIGHT, 9 April 1910, Page 267)

The DH.1 was powered by a single water-cooled, normally-aspirated, 302.18 cu in (4.95 liters) de Havilland-Iris four-cylinder horizontally-opposed overhead valve engine, designed by Geoffrey de Havilland and built by the Iris Motor Co., Willesden, London. The engine produced 40 horsepower at 1,050 r.p.m., and 52 horsepower at 1,500 r.p.m. In running condition, it weighed 230 pounds (104 kilograms) including a 30 pound (14 kilogram) flywheel. The de Havilland-Iris used cast iron cylinders with a copper water jacket. The two-throw crankshaft was prone to failures after a only few hours of operation.

The engine was mounted in the airframe with its crankshaft at a right angle to the direction of flight. It drove two 7 foot, 4 inch (2.235 meter) diameter counter-rotating propellers made of aluminum. The paddle-type blades could be adjusted for pitch before flight. Tubular shafts drove through 90° bevel gears and turned the propellers at 550–600 r.p.m.

De Havilland 302 cubic inch (4.95 liter) 45-horsepower four-cylinder horizontally-opposed aircraft engine. (FLIGHT)
Cross section of de Havilland-Iris four-cylinder engine. (FLIGHT)

And it should be added that the past tense has advisably been used in the foregoing paragraph, inasmuch as the first free flight of the machine terminated in almost complete wreckage. The first time that it left the ground it did so after travelling some 40 yards on a downward slope under its own power; it then rose at a rather steep angle, which was corrected by the pilot; and almost immediately afterwards—about 35 yards from the take-off—the left main plane doubled up, causing the machine to fall heavily forward and to the left. Luckily, Mr. de Havilland himself was not hurt, but it will be observed from some of the photographs which we reproduce that the machine as such, apart from the propelling mechanism, the rudder, and the tail, was, for all practical purposes, virtually annihilated by the fall.

FLIGHT, No. 67 (Vol. II, No. 15), 9 April 1910, Page 266, Column 1

(Flight No. 68, Vol. II, No. 16, 16 April 1910, Page 286)

The airplane’s engine was salvaged and reused in de Havilland No. 2.

Geoffrey de Havilland, O.B.E., A.F.C., photographed 2 January 1920 by Bassano Ltd. (© National Portrait Gallery, London)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

18 August 1911

Geoffrey de Havilland, 1913. (FLIGHT, 22 February 1913, Page 207))

18 August 1911: At 6:30 a.m., the Royal Aircraft Factory F.E.2 prototype took off with its designer, Geoffrey de Havilland,¹ at the controls. He made the short flight from Farnborough to Laffan’s Plain where he made a series of takeoffs and landings.

The airplane was a single-engine, two-place, two-bay biplane with a pusher propeller. The crew, a pilot and an observer/gunner, were in an open nacelle, with the engine aft, and an open tail boom.

The F.E.2 was 28 feet (8.5 meters) long with a wing span of 33 feet (10.0 meters). The total wing area was 340 square feet (31.6 square meters). It weighed 1,200 pounds (544 kilograms), loaded, and had a maximum speed of 47.5 miles per hour (76.4 kilometers per hour). The F.E.2 prototype, in its original configuration, was powered by an air-cooled Gnome 7-cylinder rotary engine which produced 50 horsepower.

Royal Aircraft Factory F.E. 2 with Maxim gun (RAF Museum)

In 1913, the F.E.2 prototype was redesigned and rebuilt with an air-cooled Renault V-8 engine, rated at 70 horsepower, driving a four-bladed fixed-pitch propeller. The wings were identical to those of the the B.E.2A. The Renault-powered F.E.2 variant was 30 feet, 0 inches (9.144 meters) long with a wingspan of 42 feet, 0 inches (12.802 meters). The wings had a chord of 6 feet, 4 inches (1.930 meters). The wing area increased to 425 square feet (39.5 square meters). The gross weight was now 1,865 pounds (846 kilograms). The F.E.2 (Renault) had a maximum speed of 67 miles per hour (108 kilometers per hour) and a service ceiling of 5,500 feet (1,676 meters).

At about 11:45 a.m., Monday, 23 February 1914, test pilot Roland Campbell Kemp (R.Ae.C. Aviator’s Certificate No. 80) was flying the F.E.2 at about 500 feet (152 meters). Also on board was a passenger, Ewart Temple Haynes. The wind was estimated at 30 miles per hour (13 meters per second). After about five minutes, the prototype entered a steep—but not heavily banked—right-hand spiral descent and crashed near Wittering, Chichester. The airplane “was completely wrecked.” Haynes was killed. Kemp was seriously injured and had no memory of the day.

The Accidents Investigation Committee of the Royal Aero Club was “of the opinion that there is no positive evidence to show why the accident occurred, but such evidence as is available points to the conclusion that the most probable cause was that the pilot’s foot slipped over the rudder bar, and that he thus lost control.” ²

After another redesign, the first production variant of de Havilland’s biplane was the F.E.2A, a three-bay biplane with a water-cooled Green six-cylinder inline engine, rated at 100 horsepower. This airplane was 32 feet, 3 inches (10.135 meters) long, with a wingspan of 47 feet, 8 inches (14.529 meters). The chord was decreased to 5 feet, 6 inches (1.676 meters). The F.E.2A’s gross weight was 2,680 pounds (1,216 kilograms). It had a maximum speed of 75 miles per hour (121 kilometers per hour) and ceiling of 6,000 feet (1,829 meters). Twelve F.E.2As were built.

Modified for a 120 horsepower Beardmore 6-cylinder engine with a 9-foot-diameter propeller (2.7 meters), the airplane was designated F.E.2B, or Fighter Mark I. The wingspan increased 1 inch to 47 feet, 9 inches (14.554 meters). The airplane had an overall height of 12 feet, 7½ inches (3.848 meters). The wings had a 3° 30′ angle of incidence and were not staggered. There was 4° dihedral. Gross weight increased to 2,827 pounds (1,282 kilograms). Its maximum speed was 73 miles per hour (117 kilometers per hour), and the service ceiling was 9,000 feet (2,743 meters). These were first used in France during World War I.

The B.E.2B was also built with a 160 horsepower Beardmore engine. The series continued with the F.E.2C and a Rolls-Royce powered F.E.2D. Dimensions remained constant, though the angle of incidence was increased to 4°.

The F.E.2 and F.E.2.A were armed with Maxim machine guns. The B.E.2B and later models had one or two .303-caliber Lewis guns.

A total of 1,939 F.E.s were built.

Three-view illustration of the Royal Aircraft Factory F.E.2B, Fighter Mark I. (FLIGHT and Aircraft Engineer, No. 2290, Vol. LXII, Friday, 12 December 1952, at Page 726)

The Royal Flying Corps initially used the F.E.2 (most sources say that “F.E.” stood for Farnham Experimental, ³ meaning that it was a pusher configuration) as a scouting and reconnaissance airplane.

On 16 October 1912, Geoffrey de Havilland was appointed Second Lieutenant (on probation), Royal Flying Corps, Military Wing, antedated to 2 September 1912. He was promoted to Lieutenant, 5 August 1914. Captain de Havilland was appointed  Officer of the Most Excellent Order of the British Empire (O.B.E.), 7 June 1918. He was awarded the Air Force Cross, 1 January 1919.

De Havilland soon founded his own aircraft design and manufacturing company, the de Havilland Aircraft Company. He would later be known as Captain Sir Geoffrey de Havilland, O.M., C.B.E., A.F.C., R.D.I., F.R.Ae.S.

¹ Many sources, including The Peerage, Person Page – 55358, identify Sir Geoffrey as “Geoffrey Raoul de Havilland.” As his son is known as Geoffrey Raoul de Havilland, Jr., that would seem reasonable, and may even be correct. However, his birth registration (England & Wales Civil Registration Birth Index, January, February, and March 1883, at Page 149, Column 1), marriage banns and certificates for both marriages, numerous announcements in The London Gazette, contemporary news articles, and his civil death registration do not include any middle name.

² Accidents Investigation Committee of the Royal Aero Club, Report No. 26

³ “Fighting Experimental” —J.M. Bruce, M.A., in Flight, No. 2290, Vol. LXII, Friday, 12 December 1952 at Page 728

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather