Tag Archives: Inertial Coupling

4 June 1954

Major Arthur Warren "Kit" Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)
Major Arthur Warren “Kit” Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)

4 June 1954: at Edwards Air Force Base, California, Major Arthur W. “Kit” Murray flew the experimental Bell X-1A research rocketplane to an altitude of 89,810 feet (27,374 meters). He flew high enough that the sky darkened and he was able to see the curvature of the Earth. Newspapers called him “America’s first space pilot.”

The X-1A reached Mach 1.97. Encountering the same inertial coupling instability as had Chuck Yeager, 20 November 1953, though at a lower speed, the X-1A tumbled out of control. The rocket plane lost over 20,000 feet (6,100 meters) altitude before Murray could regain control. For this accomplishment, Major Murray was awarded the Distinguished Flying Cross.

One week earlier, 28 May 1954, Murray had flown the X-1A to an unofficial world record altitude of 90,440 feet (27,566 meters).

Arthur Murray, 1936. (The Argus)

Arthur Warren Murray was born at Cresson, Cambria County, Pennsylvania, 26 December 1918. He was the first of two children of Charles Chester Murray, a clerk, and Elsie Espy Murray.

Arthur Murray attended Huntingdon High School, Huntingdon, Pennsylvania, graduating 4 June 1936, and then studied Juniata College, also in Huntingdon, 1937–1938.

Arthur Murray, 1938. (The Nineteen Thirty-Seven Alfarata)

Kit Murray enlisted in the Field Artillery, Pennsylvania National Guard, 17 November 1939. (Some sources state that he served in the U.S. Cavalry.) Murray had brown hair and blue eyes, was 5 feet, 10 inches (1.78 meters) tall and weighed 150 pounds (68 kilograms). Following the United States’ entry into World War II, Sergeant Murray requested to be trained as a pilot. He was appointed a flight officer (a warrant officer rank), Army of the United States, on 5 December 1942. On 15 October 1943 Flight Officer Murray received a battlefield promotion to the commissioned rank of second lieutenant, A.U.S.

Between 6 January  and 22 October 1943, Murray flew over 50 combat missions in the Curtiss-Wright P-40 Warhawk across North Africa. After about ten months in the Mediterranean Theater, he returned to the United States, assigned as an instructor flying the Republic P-47 Thunderbolt fighter bomber, stationed at Bradley Field, Hartford, Connecticut.

Republic P-47 Thunderbolts at Bradley Field, Connecticut, 9 September 1944. (U.S. Air Force)

Lieutenant Murray married Miss Elizabeth Anne Strelic, who had immigrated from Czechoslovakia with her family as an infant, at Atlantic City, New Jersey, 29 December 1943. They would have six children, and foster a seventh. They later divorced. (Mrs. Murray died in 1980.)

Lieutenant and Mrs. Arthur W. Murray, 1943. (Murray Family Collection)

Murray was promoted to 1st lieutenant, A.U.S., 8 August 1944. His next assignment was as a maintenance officer. He was sent to Maintenance Engineering School at Chanute Field, Rantoul, Illinois, and from there to the Flight Test School at Wright Field, Dayton, Ohio.

Murray was the first test pilot to be permanently assigned to Muroc Army Air Field (later, Edwards Air Force Base). Other test pilots, such as Captain Chuck Yeager, were assigned to Wright Field and traveled to Muroc as necessary.

Murray’s A.U.S. commission was converted to first lieutenant, Air Corps, United States Army, on 19 June 1947, with date of rank retroactive to 15 October 1946. The U.S. Air Force became a separate military service in 1947, and Lieutenant Murray became an officer in the new service.

Major Arthur Warren (“Kit”) Murray, United States Air Force, with a Northrop F-89 Scorpion interceptor, 1954. (The New York Times)

Murray was involved in testing new Air Force fighters such as the Bell P-59 Airacomet, Lockheed P-80 Shooting Star, Republic P-84 Thunderjet, McDonnell XF-88 Voodoo; and the Douglas XB-43 Jetmaster and North American Aviation B-45 Tornado jet bombers. He also flew the experimental aircraft such as the X-1A, X-1B, X-4 and X-5. Murray spent six years at Edwards before going on to other assignments.

Colonel Arthur Warren (“Kit”) Murray, U.S. Air Force.

Later, 1958–1960, Major Murray was the U.S. Air Force project officer for the North American Aviation X-15 hypersonic research rocketplane at Wright Field.

Colonel Murray retired from the U.S. Air Force in 1961. He next worked for Boeing in Seattle, Washington, from 1961 to 1969, and then Bell Helicopter in Texas.

On 4 April 1975, Kit Murray married his second wife, Ms. Ann Tackitt Humphreys, an interior decorator, in Tarrant County, Texas.

Colonel Arthur Warren Murray, United States Air Force (Retired), died at West, Texas, 25 July 2011, at the age of 92 years.

NASA 800, a highly modified Boeing B-29 Superfortress, carries the Bell X-1A to altitude over Edwards AFB. (NASA)
A highly modified Boeing B-29 Superfortress carries the Bell X-1A to altitude over Edwards AFB. (U.S. Air Force)

The Bell X-1A was a follow-on project to the earlier X-1. It was designed and built by the Bell Aircraft Corporation at Buffalo, New York, to investigate speeds above Mach 2 and altitudes above 90,000 feet (27,432 meters). It was carried to altitude by a modified Boeing B-29 Superfortress, then dropped for the research flight.

The rocketplane was 35 feet, 7 inches (10.846 meters) long with a wingspan of 28 feet (8.534 meters) and overall height of 10 feet, 8 inches (3.251 meters). It had an empty weight of 6,880 pounds (3,120.7 kilograms) and gross weight of 16,487 pounds (7,478.3 kilograms).

The X-1A was powered by a Reaction Motors XLR-11-RM-5 four-chamber rocket engine which produced 6,000 pounds of thrust. It had a maximum speed of Mach 2.44 (Yeager) and reached an altitude of 90,440 feet (27,566.1 meters) (Murray).

Bell X-1A 48-1384. (U.S. Air Force)
Bell X-1A 48-1384. (U.S. Air Force)

The X-1A was destroyed by an internal explosion, 20 July 1955.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

12 December 1953

Bell X-1A 48-1384 in flight. The frost band on the fuselage shows the location of the cryogenic propellant tank. (U.S. Air Force)

12 December 1953: On its tenth flight, U.S. Air Force test pilot Major Chuck Yeager flew the Bell X-1A rocket plane to Mach 2.44 (1,621 miles per hour/2,609 kilometers per hour) at 74,700 feet (22,769 meters), faster than anyone had flown before.

After the rocket engine was shut down, the X-1A tumbled out of control—”divergent in three axes” in test pilot speak—and fell out of the sky. It dropped nearly 50,000 feet (15,240 meters) in 70 seconds. Yeager was exposed to accelerations of +8 to -1.5 g’s. The motion was so violent that Yeager cracked the rocketplane’s canopy with his flight helmet.

Yeager was finally able to recover by 30,000 feet (9,144 meters) and landed safely at Edwards Air Force Base.

Yeager later remarked that if the X-1A had an ejection seat he would have used it.

Bell Aircraft Corporation  engineers had warned Yeager not to exceed Mach 2.3.

Major Charles E. Yeager, U.S. Air Force, seated in the cockpit of the Bell X-1A, 48-1384, circa 1953. (U.S. Air Force)

The following is from Major Charles E. Yeager’s official post-flight report:

“After a normal drop at 31,000 feet, chambers #4, #2, and #1 were ignited and [the] airplane was accelerated up to .8 Mach number. A flight path was formed holding .8 Mach number up to 43,000 feet where chamber #3 was ignited and the airplane accelerated in level flight to 1.1 Mach number. A climb was again started passing through 50,000 feet at 1.1 Mach number, 60,000 feet at 1.2 Mach number and a push-over was started at 62,000 feet. The top of the round-out occurred at 76,000 feet and 1.9 Mach number. The airplane was accelerated in level flight up to 2.4 [2.535 indicated] Mach number where all of the rocket chambers were cut. The flight path was very normal and nothing uneventful [sic] happened up to this point. After the engine was cut, the airplane went into a Dutch roll for approximately 2 oscillations and then started rolling to the right at a very rapid rate of roll. Full aileron and opposite rudder were applied with no effect on the rate of roll of the airplane. After approximately 8 to 10 complete rolls, the airplane stopped rolling in the inverted position and after approximately one-half of one second started rolling to the left at a rate in excess of 360 degrees per second, estimated by the pilot. At this point the pilot was completely disoriented and was not sure what maneuvers the airplane went through following the high rates of roll. Several very high ‘g’ loads both positive and negative and side loads were felt by the pilot. At one point during a negative ‘g’ load, the pilot felt the inner liner of the canopy break as the top of his pressure suit helmet came in contact with it. The first maneuver recognized by the pilot was an inverted spin at approximately 33,000 feet. The airplane then fell off into the normal spin from which the pilot recovered at 25,000 feet.”

Flight test data from Yeager's 12 December 1953 flight superimposed over a photograph of the bell X-1A. (NASA)
Flight test data from Yeager’s 12 December 1953 flight superimposed over a photograph of the Bell X-1A. (NASA)

The following is a transcript of radio transmissions during the flight:

Yeager: Illegible [inaudible]—gasping—I’m down to 25,000 over Tehachapi. Don’t know
whether I can get back to the base or not.
Chase (Ridley): At 25,000 feet, Chuck?
Yeager: Can’t say much more, I got to (blurry—save myself).
Yeager: I’m—(illegible)—(Christ!)
Chase (Ridley): What say, Chuck?
Yeager: I say I don’t know if I tore anything up or not but Christ!
Chase (Murray): Tell us where you are if you can.
Yeager: I think I can get back to the base okay, Jack. Boy, I’m not going to do that any more.
Chase (Murray): Try to tell us where you are, Chuck.
Yeager: I’m (gasping)…I’ll tell you in a minute. I got 1800 lbs [nitrogen] source pressure.
Yeager: I don’t think you’ll have to run a structure demonstration on this damned thing!
Chase (Murray): Chuck from Murray, if you can give me altitude and heading, I’ll try to check you from outside.
Yeager: Be down at 18,000 feet. I’m about—I’ll be over the base at about 15,000 feet in a minute.
Chase (Murray): Yes, sir.
Yeager: Those guys were so right!
Yeager: Source pressure is still 15 seconds, I’m getting OK now.
Yeager: I got all the oscillograph data switches off. 4 fps camera off, it’s okay.
Bell Truck: Jettison and vent your tanks.
Yeager: I have already jettisoned. Now I’m venting both lox and fuel. Leaving hydrogen peroxide alone.
Bell Truck: Roger.
Yeager: I cut it, I got—in real bad trouble up there.
Yeager: Over the base right now, Kit, at 14,500 feet.
Chase (Murray): I have you.

A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)
A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)

In his autobiography, Always Another Dawn, NACA test pilot Albert Scott Crossfield wrote:

Probably no other pilot could have come through that experience alive. Much later I asked Yeager, as a matter of professional interest, exactly how he regained control of the ship. He was vague in his reply, but he said he thought that after he reached the thick atmosphere, he had deliberately put the ship into a spin.

“A spin is something I know how to get out of,” he said. “That other business— the tumble—there is no way to figure that out.”

. . . Yeager received many accolades. I didn’t begrudge him one of them. If ever a pilot deserved praise for a job well done, it was Yeager. After that X-1A episode, he never flew a rocketplane again.

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, Chapter 19 at Pages 183–184.  

Bell X-1A 48-1384 (U.S. Air Force)

The Bell X-1A, 48-1384, was an experimental rocket-powered high-speed, high-altitude research aircraft. It was one of four second-generation X-1s (including the X-1B, X-1D and X-1E), specifically designed to investigate dynamic stability at speeds in excess of Mach 2 and altitudes greater than 90,000 feet. It was a mid-wing monoplane with retractable tricycle landing gear. The airplane was 35 feet, 6.58 inches (10.835 meters) long with a wingspan of 30 feet, 6 inches (9.296 meters) and overall height of 10 feet, 2.37 inches (3.261 meters). The wheelbase, measured from the nose wheel axle to the main wheel axle, was  13 feet, 5.13 inches. (4.093 meters). The main wheel tread was 4 feet, 3 inches (1.295 meters). The X-1A design gross weight was 10,668 pounds (4,839 kilograms).

The X-1A was powered by a single Reaction Motors XLR11-RM-5 rocket engine with four independent combustion chambers. The XLR11 was fueled with ethyl alcohol and liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons).

The Bell X-1A made its first flight 14 February 1953 with Bell test pilot Jean Ziegler in the cockpit. It reached its highest speed, Mach 2.44 on Flight 10. Its highest altitude was 90,440 feet (27,566 meters) on its 24th flight. On 8 August 1955, while still on board its B-50 drop ship, the X-1A suffered an external explosion. The rocketplane was jettisoned and destroyed when it hit the desert floor.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather