Tag Archives: Reaction Motors XLR11-RM-5

12 December 1953

Bell X-1A 48-1384 in flight. The frost band on the fuselage shows the location of the cryogenic propellant tank. (U.S. Air Force)

12 December 1953: On its tenth flight, U.S. Air Force test pilot Major Chuck Yeager flew the Bell X-1A rocket plane to Mach 2.44 (1,621 miles per hour/2,609 kilometers per hour) at 74,700 feet (22,769 meters), faster than anyone had flown before.

After the rocket engine was shut down, the X-1A tumbled out of control—”divergent in three axes” in test pilot speak—and fell out of the sky. It dropped nearly 50,000 feet (15,240 meters) in 70 seconds. Yeager was exposed to accelerations of +8 to -1.5 g’s. The motion was so violent that Yeager cracked the rocketplane’s canopy with his flight helmet.

Yeager was finally able to recover by 30,000 feet (9,144 meters) and landed safely at Edwards Air Force Base.

Yeager later remarked that if the X-1A had an ejection seat he would have used it.

Bell Aircraft Corporation  engineers had warned Yeager not to exceed Mach 2.3.

Major Charles E. Yeager, U.S. Air Force, seated in the cockpit of the Bell X-1A, 48-1384, circa 1953. (U.S. Air Force)

The following is from Major Charles E. Yeager’s official post-flight report:

“After a normal drop at 31,000 feet, chambers #4, #2, and #1 were ignited and [the] airplane was accelerated up to .8 Mach number. A flight path was formed holding .8 Mach number up to 43,000 feet where chamber #3 was ignited and the airplane accelerated in level flight to 1.1 Mach number. A climb was again started passing through 50,000 feet at 1.1 Mach number, 60,000 feet at 1.2 Mach number and a push-over was started at 62,000 feet. The top of the round-out occurred at 76,000 feet and 1.9 Mach number. The airplane was accelerated in level flight up to 2.4 [2.535 indicated] Mach number where all of the rocket chambers were cut. The flight path was very normal and nothing uneventful [sic] happened up to this point. After the engine was cut, the airplane went into a Dutch roll for approximately 2 oscillations and then started rolling to the right at a very rapid rate of roll. Full aileron and opposite rudder were applied with no effect on the rate of roll of the airplane. After approximately 8 to 10 complete rolls, the airplane stopped rolling in the inverted position and after approximately one-half of one second started rolling to the left at a rate in excess of 360 degrees per second, estimated by the pilot. At this point the pilot was completely disoriented and was not sure what maneuvers the airplane went through following the high rates of roll. Several very high ‘g’ loads both positive and negative and side loads were felt by the pilot. At one point during a negative ‘g’ load, the pilot felt the inner liner of the canopy break as the top of his pressure suit helmet came in contact with it. The first maneuver recognized by the pilot was an inverted spin at approximately 33,000 feet. The airplane then fell off into the normal spin from which the pilot recovered at 25,000 feet.”

Flight test data from Yeager's 12 December 1953 flight superimposed over a photograph of the bell X-1A. (NASA)
Flight test data from Yeager’s 12 December 1953 flight superimposed over a photograph of the Bell X-1A. (NASA)

The following is a transcript of radio transmissions during the flight:

Yeager: Illegible [inaudible]—gasping—I’m down to 25,000 over Tehachapi. Don’t know
whether I can get back to the base or not.
Chase (Ridley): At 25,000 feet, Chuck?
Yeager: Can’t say much more, I got to (blurry—save myself).
Yeager: I’m—(illegible)—(Christ!)
Chase (Ridley): What say, Chuck?
Yeager: I say I don’t know if I tore anything up or not but Christ!
Chase (Murray): Tell us where you are if you can.
Yeager: I think I can get back to the base okay, Jack. Boy, I’m not going to do that any more.
Chase (Murray): Try to tell us where you are, Chuck.
Yeager: I’m (gasping)…I’ll tell you in a minute. I got 1800 lbs [nitrogen] source pressure.
Yeager: I don’t think you’ll have to run a structure demonstration on this damned thing!
Chase (Murray): Chuck from Murray, if you can give me altitude and heading, I’ll try to check you from outside.
Yeager: Be down at 18,000 feet. I’m about—I’ll be over the base at about 15,000 feet in a minute.
Chase (Murray): Yes, sir.
Yeager: Those guys were so right!
Yeager: Source pressure is still 15 seconds, I’m getting OK now.
Yeager: I got all the oscillograph data switches off. 4 fps camera off, it’s okay.
Bell Truck: Jettison and vent your tanks.
Yeager: I have already jettisoned. Now I’m venting both lox and fuel. Leaving hydrogen peroxide alone.
Bell Truck: Roger.
Yeager: I cut it, I got—in real bad trouble up there.
Yeager: Over the base right now, Kit, at 14,500 feet.
Chase (Murray): I have you.

A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)
A North American F-86E-10-NA Sabre chase plane, 51-2848, follows the Bell X-1A as it glides toward Rogers Dry Lake. (NASA)

In his autobiography, Always Another Dawn, NACA test pilot Albert Scott Crossfield wrote:

Probably no other pilot could have come through that experience alive. Much later I asked Yeager, as a matter of professional interest, exactly how he regained control of the ship. He was vague in his reply, but he said he thought that after he reached the thick atmosphere, he had deliberately put the ship into a spin.

“A spin is something I know how to get out of,” he said. “That other business— the tumble—there is no way to figure that out.”

. . . Yeager received many accolades. I didn’t begrudge him one of them. If ever a pilot deserved praise for a job well done, it was Yeager. After that X-1A episode, he never flew a rocketplane again.

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, Chapter 19 at Pages 183–184.  

Bell X-1A 48-1384 (U.S. Air Force)

The Bell X-1A, 48-1384, was an experimental rocket-powered high-speed, high-altitude research aircraft. It was one of four second-generation X-1s (including the X-1B, X-1D and X-1E), specifically designed to investigate dynamic stability at speeds in excess of Mach 2 and altitudes greater than 90,000 feet. It was a mid-wing monoplane with retractable tricycle landing gear. The airplane was 35 feet, 6.58 inches (10.835 meters) long with a wingspan of 30 feet, 6 inches (9.296 meters) and overall height of 10 feet, 2.37 inches (3.261 meters). The wheelbase, measured from the nose wheel axle to the main wheel axle, was  13 feet, 5.13 inches. (4.093 meters). The main wheel tread was 4 feet, 3 inches (1.295 meters). The X-1A design gross weight was 10,668 pounds (4,839 kilograms).

The X-1A was powered by a single Reaction Motors XLR11-RM-5 rocket engine with four independent combustion chambers. The XLR11 was fueled with ethyl alcohol and liquid oxygen. It produced 6,000 pounds of thrust (26.689 kilonewtons).

The Bell X-1A made its first flight 14 February 1953 with Bell test pilot Jean Ziegler in the cockpit. It reached its highest speed, Mach 2.44 on Flight 10. Its highest altitude was 90,440 feet (27,566 meters) on its 24th flight. On 8 August 1955, while still on board its B-50 drop ship, the X-1A suffered an external explosion. The rocketplane was jettisoned and destroyed when it hit the desert floor.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 1 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California.Bell X-1E 46-063 on display at Dryden Flight Research Center© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

17 September 1959

X-15 56-6670 is carried under the right wing of NB-52A 52-003. Scott Crossfield is in the cockpit of the rocket plane.

17 September 1959: After previously making one glide flight, North American Aviation Chief Engineering Test Pilot Albert Scott Crossfield made the first powered flight of an X-15 hypersonic research rocket plane.

Carried aloft under the right wing of an eight-engine Boeing NB-52A Stratofortress bomber, USAF serial number 52-003, the first of three North American Aviation X-15s, 56-6670, was airdropped from 35,000 feet (10,668 meters) over Rosamond Dry Lake, 40 miles (64 kilometers) north of Edwards Air Force Base. Launch time was 08:08:48.0 a.m., Pacific Daylight Savings Time (15:08.48.0 UTC).

Scott Crossfiled prepares for a flight in the North American Aviation X-15A
Scott Crossfield prepares for a flight in the North American Aviation X-15A. Crossfield is wearing a conformal (face seal) helmet with his David Clark Co. MC-2 full-pressure suit. (NASA/North American Aviation, Inc.)

The X-15 was designed to use the Reaction Motors XLR-99 rocket engine, but early in the test program that engine was not yet available so two smaller XLR-11 engines were used. This was engine the same type used in the earlier Bell X-1 rocket plane that first broke the sound barrier in 1948. Though producing just one-fourth the thrust of the XLR-99, it allowed the functional testing of the X-15 to proceed.

Scott Crossfield wrote:

     Two minutes after launch I reached 50,000 feet and pushed over in level flight. Then I dropped the nose slightly for a speed run, meanwhile maneuvering the ship through a series of turns and rolls, conscious of a deep rumbling noise of the rocket and a great rush of wind on the fuselage. It was obvious the black bird was in her element at supersonic speeds. She responded beautifully. I stared in fascination at the Mach meter which climbed from 1.5 Mach to 1.8 Mach and then effortlessly to my top speed for this flight of 2.3 Mach or about 1,500 miles and hour. Then, because I was under orders not to take the X-15 wide open, I shut off three of the rocket barrels. As I slowed down, I recalled the agony at Edwards many years before when we had worked for months pushing, calculating, polishing and who knows what else to achieve Mach 2 in the Skyrocket. Now with the X-15 we had reached that speed in three minutes on our first powered flight and I had to throttle back.

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 39 at Pages 362.

The X-15 dropped 2,000 feet (610 meters) while Scott Crossfield ignited the two XLR-11 engines and then started “going uphill.” During the 224.3 seconds burn duration, the X-15 reached Mach 2.11 (1,393 miles per hour, 2,242 kilometers per hour) and climbed to 52,300 feet (15,941 meters), both slightly higher than planned.

Problems developed when the rocket engine’s turbo pump case failed, and fire broke out in the hydrogen peroxide compartment, engine compartment and in the ventral fin. Crossfield safely landed on Rogers Dry Lake at Edwards Air Force Base. The duration of the flight was 9 minutes, 11.1 seconds. Damage to the rocket plane was extensive but was quickly repaired. 56-6670 flew again 17 October 1959.

Chief Engineering Test Pilot A. Scott Crossfield climbs out of teh cockpt of a North American Aviation X-15A hypersonic research rocketplane. (Getty Images)
Chief Engineering Test Pilot A. Scott Crossfield climbs out of the cockpit of a North American Aviation X-15A hypersonic research rocketplane. (Getty Images)

Over the next nine years the three X-15s would make 199 flights, setting speed and altitude records nearly every time they flew, and expanding NASA’s understanding of flight in the hypersonic range. The first two X-15s, 56-6670 and 56-6671, survived the program. 670 is at the Smithsonian Institution National Air and Space museum and 671 is at the National Museum of the United States Air Force.

Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)
Test pilot Albert Scott Crossfield with X-15 56-6670 attached to the right wing pylon of NB-52A 52-003 at Edwards Air force Base. (North American Aviation Inc.)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 August 1953

Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a David Clark Co. capstan-type partial pressure suit with a K-1 helmet. This scene was portrayed by William Holden in Toward The Unknown". (LIFE Magazine via jet Pilot Overseas)
Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a T-1 capstan-type partial-pressure suit with a K-1 helmet. This scene was portrayed by William Holden in “Toward The Unknown”. (LIFE Magazine via Jet Pilot Overseas)

22 August 1953: After one successful glide flight with Bell Aircraft Corporation test pilot Skip Ziegler, the X-1D rocketplane, serial number 48-1386, was scheduled for its first powered flight with the Air Force project officer, Lieutenant Colonel Frank Kendall (“Pete”) Everest.

Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)
Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)

The Bell X-1D was one of four second-generation X-1 rocketplanes, each designed and built to investigate a different area of supersonic flight. The X-1D was instrumented for aerodynamic heating research.

A Boeing EB-50D Superfortress carries the Bell X-1D. (Edwards Flight Test.com)
The Boeing EB-50A Superfortress carries the Bell X-1D. The band of white frost around the rocketplane’s fuselage shows the location of the liquid oxygen tank. (EdwardsFlightTest.com)
A Boeing EB-50D Superfortress carries the Bell X-1D at high altitude. (U.S. Air Force)
The Boeing EB-50A Superfortress carries a Bell X-1 at high altitude. (U.S. Air Force)

After being carried to altitude by the Boeing EB-50A Superfortress mothership, Pete Everest saw that the rocketplane’s nitrogen pressure was dropping. (Pressurized nitrogen was used to push the ethyl alcohol/liquid oxygen propellant to the Reaction Motors XLR11-RM-5 engine.) With insufficient pressure, the X-1D’s flight had to be cancelled. Everest tried to jettison the fuel so that a landing could be made safely. There was an internal explosion.

Fearing that a larger explosion or fire would jeopardize the bomber and its crew, Everest abandoned the X-1D, climbing up into the bomber. The X-1 was then dropped. It crashed onto the desert floor and exploded.

Wreckage of Bell X-1D 48-1386. (U.S. Air Force)
Wreckage of Bell X-1D 48-1386. (U.S. Air Force)

At first it was assumed that vapors from a fuel leak had exploded from contact with an electrical source inside the rocketplane. There had been three similar explosions which resulted in the destruction of the X-1A, X-1-3 and the number two Bell X-2. That explosion, which occurred while the X-2 was on a captive test flight near the Bell Aircraft Corporation Factory, Buffalo, New York, 12 May 1953, killed test pilot Skip Ziegler and flight test engineer Frank Wolko aboard the B-29 mothership.

Investigators discovered that leather gaskets which were used in the rocketplanes’ fuel systems had been treated with tricresyl phospate (TCP). When this was exposed to liquid oxygen, an explosion could result. The leather gaskets were removed from the other rocketplanes and the explosions stopped.

Colonel Everest’s close call was dramatized in the 1956 Toluca Productions motion picture, “Toward The Unknown,” which starred Academy Award-winning actor William Holden as “Major Lincoln Bond,” a fighter pilot, test pilot and former prisoner of war, all of which could describe Pete Everest.

Major Frank K. Everest, U.S. Air Force gives some technical advice to William Holden ("Major Lincoln Bond") with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Major Frank K. Everest, U.S. Air Force, gives some technical advice to William Holden (“Major Lincoln Bond”) with Bell X-2 46-674, on the set of “Toward The Unknown”, 1956. (bellx-2.com)

Frank Kendall (“Pete”) Everest, Jr., was born 10 August 1920, at Fairmont, Marion County, West Virginia. He was the first of two children of Frank Kendall Everest, an electrician, and Phyllis Gail Walker Everest. He attended Fairmont Senior High School, Fairmont, West Virginia, graduating in 1938, and then Fairmont State Teachers College where he was a member of the Tau Beta Iota (ΤΒΙ) fraternity. Everest also studied engineering at the University of West Virginia in Morgantown.

Pete Everest enlisted as an aviation cadet in the United States Army Air Corps at Fort Hayes, Columbus, Ohio, 7 November 1941, shortly before the United States entered World War II. His enlistment records indicate that he was 5 feet, 7 inches (1.70 meters) tall and weighed 132 pounds (60 kilograms). Everest graduated from pilot training and was commissioned as a second lieutenant, Air Reserve, 3 July 1942.

Lieutenant Everest married Miss Avis June Mason in Marion County, West Virginia, 8 July 1942. They would have three children, Frank, Vicky and Cindy.

Lieutenant Everest was appointed first lieutenant, Army of the United States (A.U.S.), 11 November 1942. He was assigned as a Curtiss-Wright P-40 Warhawk fighter pilot. Everest flew 94 combat missions with the 314th Fighter Squadron, 324th Fighter Group, in North Africa, Sicily and Italy. He was credited with shooting down two Luftwaffe Junkers Ju-52 transports, 18 April 1943, and damaging a third. Everest was promoted to the rank of captain, A.U.S., 17 August 1943.

Pete Everest with his Curtiss-Wright P-40 Warhawk, North Africa, 1943. (West Virginia State Archives)

In 1944, Captain Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations, commanding the 17th Provisional Fighter Squadron at Chenkiang (Zhenjiang), China, where he flew 67 missions in the Northh American P-51 Mustang, and shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war. He was promoted to the rank of major, A.U.S., 1 July 1945. He was returned to the control of the United States military 3 October 1945.

After the war, Major Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California.

Everest’s permanent rank was advanced from second lieutenant, Air Reserve, to first lieutenant, Air Corps, 19 June 1947, with date of rank retroactive to 3 July 1945.

At Edwards, Pete Everest was involved in nearly every flight test program, flying the F-88, F-92, F-100 (he flew the YF-100A prototype to an FAI world speed record, 29 October 1953¹), F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the Bell X-1B to Mach 2.3, and he set an unofficial world speed record with the Bell X-2 at Mach 2.87 (1,957 miles per hour, 3,150 kilometers per hour), which earned him the title, “The Fastest Man Alive.” He was the pilot on thirteen of the twenty X-2 flights.

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

Frank Everest returned to operational assignments in March 1957, commanding the 461st Fighter Squadron, 36th Fighter Wing, equipped with the F-100 Super Sabre, at Hahn Air Base, Germany. Later, Colonel Everest commanded the 4453rd and 4520th Combat Crew Training Wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base, Florida.

On 1 November 1965, Pete Everest was promoted to the rank of brigadier general. Between 1966 and 1972, General Everest flew 32 combat missions over Southeast Asia.

He served as commander of the Aerospace Rescue and Recovery Service from 1970 to 1973. He retired from the Air Force 1 March 1973 after 33 years of service. PeteEverest later worked as a test pilot for Sikorsky Aircraft.

During his military career, General Everest was awarded the Air Force Distinguished Service Medal; Legion of Merit with two oak leaf clusters (three awards); Distinguished Flying Cross with two oak leaf clusters (three awards); Purple Heart; Air Medal with one silver and two bronze oak leaf clusters (seven awards); Air Force Commendation Medal with one oak leaf cluster (two awards); Presidential Unit Citation with two bronze oak leaf clusters (three awards); Air Force Gallant Unit Citation; Prisoner of War Medal; American Campaign Medal; European-African-Middle Eastern Campaign medal with four bronze stars; Asiatic-Pacific campaign Medal with two bronze stars; World War II Victory Medal; national Defense Service Medal; Armed Forces Expeditionary Medal; Vietnam Service Medal; Air Force Longevity Service Award with one silver and two bronze oak leaf clusters (eight awards); Air Force Small Arms Expert Marksmanship Ribbon; and the Republic of Vietnam Campaign Medal with 1960– device. General Everest was rated as a Command Pilot, and a Basic Parachutist.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, died at Tucson, Arizona, 1 October 2004, at the age of 84 years.

Bell X-2 46-674 is airdropped from the EB-50D Superfortress, 48-096. U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force

¹ FAI Record File Number 8868: World Record for Speed Over a Straight 15/25 Kilometer Course, 1,215.298 kilometers per hour (755.151 miles per hour)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

4 June 1954

Major Arthur Warren "Kit" Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)
Major Arthur Warren “Kit” Murray, U.S. Air Force, with the Bell X-1A at Edwards AFB, 20 July 1954. Major Murray is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet. (NASA)

4 June 1954: at Edwards Air Force Base, California, Major Arthur W. “Kit” Murray flew the experimental Bell X-1A research rocketplane to an altitude of 89,810 feet (27,374 meters). He flew high enough that the sky darkened and he was able to see the curvature of the Earth. Newspapers called him “America’s first space pilot.” The X-1A reached Mach 1.97. Encountering the same inertial coupling instability as had Chuck Yeager, 20 November 1953, though at a lower speed, the X-1A tumbled out of control. The rocket plane lost over 20,000 feet (6,100 meters) altitude before Murray could regain control.

One week earlier, 28 May 1954, Murray had flown the X-1A to an unofficial world record altitude of 90,440 feet (27,566 meters).

Kit Murray enlisted in the United States Cavalry in 1939. After the Japanese attack on Pearl Harbor, 7 December 1941, he requested to be trained as a pilot.

Murray flew the Curtiss P-40 Warhawk in combat in North Africa. After a year, he was sent back to the United States to be an instructor flying the Republic P-47 Thunderbolt fighter.

His next assignment was as a maintenance officer. He was sent to Maintenance Engineering School, and from there to the Flight Test School at Wright Field.

Murray was the first test pilot permanently assigned to Muroc Army Air Field (later, Edwards Air Force Base). Other test pilots, such as Captain Chuck Yeager, were assigned to Wright Field and traveled to Muroc as necessary.

Murray was involved in testing new Air Force fighters and also the experimental aircraft such as the X-1A, X-1B, X-4 and X-5. He spent six years at Edwards before going on to other assignments. Later he was the U.S. Air Force project officer for the North American Aviation X-15 hypersonic research rocketplane.

NASA 800, a highly modified Boeing B-29 Superfortress, carries the Bell X-1A to altitude over Edwards AFB. (NASA)
A highly modified Boeing B-29 Superfortress carries the Bell X-1A to altitude over Edwards AFB. (U.S. Air Force)

The Bell X-1A was a follow-on project to the earlier X-1. It was designed and built by the Bell Aircraft Corporation at Buffalo, New York, to investigate speeds above Mach 2 and altitudes above 90,000 feet (27,432 meters). It was carried to altitude by a modified Boeing B-29 Superfortress, then dropped for the research flight.

The rocketplane was 35 feet, 7 inches (10.846 meters) long with a wingspan of 28 feet (8.534 meters) and overall height of 10 feet, 8 inches (3.251 meters). It had an empty weight of 6,880 pounds (3,120.7 kilograms) and gross weight of 16,487 pounds (7,478.3 kilograms).

The X-1A was powered by a Reaction Motors XLR-11-RM-5 four-chamber rocket engine which produced 6,000 pounds of thrust. It had a maximum speed of Mach 2.44 (Yeager) and reached an altitude of 90,440 feet (27,566.1 meters) (Murray).

Bell X-1A 48-1384. (U.S. Air Force)
Bell X-1A 48-1384. (U.S. Air Force)

The X-1A was destroyed by an internal explosion, 20 July 1955.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather