Tag Archives: Roll Out

20 May 1969

Apollo 11/Saturn V (AS-506) on the crawler transporter at Kennedy Space center, Cape Canaveral Florida, 20 May 1969. (NASA)
Apollo 11/Saturn V (AS-506) and its Mobile Launch Platform on one of the two Crawler–Transporters at Kennedy Space Center, Cape Canaveral, Florida, 20 May 1969. (NASA)

20 May 1969: The Apollo 11 Saturn V (SA-506) “stack” was rolled out of the Vehicle Assembly Building aboard a Mobile Launch Platform, carried by a Crawler-Transporter, and moved to Launch Complex 39A. The rocket would be launched for the Moon at 13:32:00 UTC, 16 July 1969.

The two Crawler-Transporters are the world’s largest self-propelled land vehicles. They were designed and built by Marion Power Shovel Company, Marion, Ohio, and were assembled on Merritt Island. (The Crawlerway connected the island to mainland Florida, so that it now forms a peninsula.) They are 131 feet (39.9 meters) long and 113 feet  (34.4 meters) wide. The height is adjustable from 20 feet (6.1 meters) to 26 feet (7.9 meters). The load deck is 90 feet × 90 feet (27.4 × 27.4 meters). The transporters weigh 2,721 metric tons (3,000 tons).

A Crawler-Transporter carrying a Mobile Launch Platform. (NASA)

The Crawler-Transporters were powered by two 10,687.7-cubic-inch-displacement (175.1 liters) liquid-cooled, turbosupercharged, American Locomotive Company (ALCO) V-16 251C 45° sixteen-cylinder 4-cycle diesel engines. This engine produced 2,750 horsepower. The engines drive four 1,000 kilowatt electric generators. These in turn supply electricity to sixteen 375 horsepower traction motors.

Two 1,065 horsepower White-Superior eight-cylinder diesel engines provide electrical and hydraulic power to operate the crawlers’ systems. The hydraulic system operates at 5,200 p.s.i.

The maximum loaded speed is 0.9 miles per hour (1.4 kilometers per hour).

Since the time of the Apollo and Space Shuttle Programs, the Crawler-Transporters have been upgraded to handle the Space Launch System (SLS) heavy-lift rockets. The original ALCO locomotive engines have been replaced by two Cummins QSK95 16-cylinder diesel/C3000-series 1,500 kW power generation units. The new engine displaces 5,797 cubic inches and produces a maximum 4,200 horsepower at 1,200 r.p.m. The QSK95 has 46% less displacement than the old ALCO, weighs 39% less, but produces 57% more horsepower. The generators also double the electrical output.

Inside the Vehicle Assembly Building, a Cummins power generation unit is lowered into a Crawler-Transporter. (NASA)

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet (110.642 meters) tall. The first and second stages were 33 feet (10.058 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms). It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

A Saturn V S-IC first stage being lifted inside the Vehicle Assembly Building. (NASA 68-HC-70)

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust, each, for a total of 7,610,000 pounds of thrust at Sea Level. These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

A Saturn V S-II second stage being positioned above the S-IC first stage. (NASA MSFC-67-58331)

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust, and combined, 1,161,250 pounds of thrust.

A Saturn V S-IVB third stage with its Rocketdyne J-2 engine. ( NASA)

The Saturn V third stage was designated S-IVB. It was built by McDonnell Douglas Astronautics Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB wou place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

Saturn V SA-506 traveles the 3.5 mile "crawlerway" from the Vehicle Assembly Building to Launch Complex 39A, 20 May 1969. (NASA)
Saturn V SA-506 travels the 3.5 mile “crawlerway” from the Vehicle Assembly Building to Launch Complex 39A, 20 May 1969. (NASA)

© 2019, Bryan R. Swopes

14 May 1954

Boeing 367-80 N70700 is rolled out of teh final assembly building at Boeing's facility at Renton Field, 14 may 1954. (Boeing)
Boeing 367-80 N70700 is rolled out of the final assembly building at Boeing’s facility at Renton Field, 14 May 1954. (Boeing)

14 May 1954: The Boeing Model 367-80 prototype, N70700, was rolled out at the Boeing plant at Renton Field, south of Seattle, Washington. Boeing’s founder, William Edward Boeing (1881–1956) was present. The prototype made its first flight 15 July 1954 with Boeing test pilots Alvin M. “Tex” Johnston and Richard L. “Dix” Loesch. It is painted yellow and brown.

Originally planned as a turbojet-powered development of the Boeing KC-97 Stratotanker, the Model 367, the 367-80 was the 80th major design revision. It is called the “Dash 80.”

Boeing had risked $16,000,000 in a private venture to build the Dash 80 in order to demonstrate its capabilities to potential civilian and military customers, while rivals Douglas and Lockheed were marketing their own un-built jet airliners. Put into production as the U.S. Air Force KC-135A Stratotanker air refueling tanker and C-135 Stratolifter transport, a civil variant was also produced as the Boeing 707 Stratoliner, the first successful jet airliner. Though they look very similar, the 707 is structurally different than the KC-135 and has a wider fuselage.

Cutaway scale model of the Boeing 367-80 showing interior arrangement. The woman on the right is Gloria Durnell, a secretary at Boeing. (Boeing)

The prototype Boeing Model 367-80 was operated by a pilot, co-pilot and flight engineer. The airplane’s wing was mounted low on the fuselage and the engine nacelles were mounted on pylons under the wing, as they were on Boeing’s B-47 Stratojet and B-52 Stratofortress. The wings and tail surfaces were swept to 35° at 25% chord, and had 7° dihedral. The Dash 80 was 127 feet 10 inches (38.964 meters) long with a wingspan of 129 feet, 8 inches (39.522 meters) and overall height of 38 feet (11.582 meters). The tail span is 39 feet, 8 inches (12.090 meters). The empty weight of the 367-80 was 75,630 pounds (34,505 kilograms) and the gross weight, 190,000 pounds (86,183 kilograms).

Boeing 367-80 N70700. (San Diego Air & Space Museum Archives)

N70700 was powered by four Pratt & Whitney Turbo Wasp JT3C engines. This engine is a civil variant of the military J57 series. It is a two-spool, axial-flow turbojet engine with a 16-stage compressor and 2-stage turbine. The JT3C-6 (used in the first production 707s) was rated at 11,200 pounds of thrust (49.82 kilonewtons), and 13,500 pounds (60.05 kilonewtons) with water/methanol injection). The JT3C is 11 feet, 6.6 inches (3.520 meters) long, 3 feet, 2.9 inches (0.988 meters) in diameter, and weighs 4,235 pounds (1,921 kilograms).

These gave the 367-80 a cruise speed of 550 miles per hour (885 kilometers per hour) and a maximum speed of 0.84 Mach (582 miles per hour, 937 kilometers per hour) at 25,000 feet (7,620 meters). The service ceiling was 43,000 feet (13,106 meters). Its range was 3,530 miles (5,681 kilometers).

Boeing continued to use the 367–80 for testing, finally retiring it 22 January 1970. At that time, its logbook showed 2,346 hours, 46 minutes of flight time (TTAF). It was flown to Davis-Monthan Air Force Base, Tucson, Arizona, and placed in storage. In 1990, Boeing returned it to flyable condition and flew it back it to Renton where a total restoration was completed. Many of those who had worked on the Dash 80, including Tex Johnston, were aboard.

Boeing 367-80, N70700, in storage. (San Diego Air & Space Museum)

The pioneering airplane was presented to the Smithsonian Institution and is on display at the National Air and Space Museum, Steven V. Udvar-Hazy Center. The Boeing 367-80 was designated an International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers.

820 of the C-135 series and 1,010 Model 707 aircraft were built from 1957–1979.

(The Boeing Model 367-80 is on display at the Steven F. Udvar-Hazy center, Smithsonian Institution National Air and Space Museum. (Photo by Dane Penland, National Air and Space Museum, Smithsonian Institution)
The Boeing Model 367-80 is on display at the Steven F. Udvar-Hazy center, Smithsonian Institution National Air and Space Museum. (Photo by Dane Penland, National Air and Space Museum, Smithsonian Institution)

Highly recommended: Tex Johnston, Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1991

© 2019, Bryan R. Swopes

11 May 1964

XB-70A-1-NA 62-0001 rollout at Air Force Plant 42, 11 May 1964. (North American Aviation, Inc.)

11 May 1964: At Air Force Plant 42 near Palmdale, a small city in the high desert of southern California, the first prototype North American Aviation XB-70A-1-NA Valkyrie, 62-0001, was rolled out. More than 5,000 people were there to watch.

In August 1960, the U.S. Air Force had contracted for one XB-70 prototype and 11 pre-production YB-70 development aircraft. By 1964, however, the program had been scaled back to two XB-70As and one XB-70B. Only two were actually completed.

“Ride of the Valkyrs” by John Charles Dollman, 1909. In Norse mythology, the valkyries were immortal female figures who chose who among those who had died in battle were worthy of being taken to Valhalla.

The B-70 was designed as a Mach 3+ strategic bomber capable of flying higher than 70,000 feet (21,336 meters). Like its contemporaries, the Lockheed Blackbirds, the Valkerie was so advanced that it was beyond the state of the art. New materials and processes had to be developed, and new industrial machinery designed and built.

The XB-70A is a very large aircraft with a canard-delta configuration, built primarily of stainless steel and titanium. It has twin vertical fins combining the functions of stabilizers and rudders. The XB-70A Valkyrie prototype is 193 feet, 5 inches (58.953 meters) long, including the pitot boom, with a wingspan of 105 feet, 0 inches (32.004 meters) and overall height of 30 feet, 9 inches (9.373 meters). The canard span is 28 feet, 10 inches (8.788 meters). The canard has flaps, while the delta wing used multiple separate elevons for pitch and roll control.

North American Aviation XB-70A-1-NA Valkyrie takes off at Edwards Air Force Base, 17 August 1965. (NASA)

The delta wing has an angle of incidence of 0° and its leading edges are swept to 65.57°, with 0° sweep at the trailing edge. The wings have a maximum of -2.60° of twist. The wings of 62-001 have no dihedral, but the second B-70, 62-0207, had 5° dihedral. The total wing area is 6,297.8 square feet (585.1 square meters).

The canard also has 0° of incidence and dihedral. Its leading edge is swept aft 31.70°, while the trailing edge sweeps forward 14.91°. The canard has a total area of 415.59 square feet (38.61 square meters). The canard flaps can be lowered to 20°.

The vertical fins have a height of 15 feet (4.572 meters). The leading edges are swept 51.77° and the trailing edges, 10.89°.

The B-70 was designed to “surf” on its own supersonic shock wave (this was called “compression lift”). The outer 20 feet (6.096 meters) of each wing could be lowered to a 25° or 65° angle for high speed flight. Although this did provide additional directional stability, it actually helped increase the compression lift, which supported up to 35% of the airplane’s weight in flight.

North American Aviation XB-70A-1-NA Valkyrie 62-0001. (U.S. Air Force)

The first prototype, 62-001, had an empty weight of 231,215 pounds (104,877 kilograms), and its maximum takeoff weight was 521,056 pounds (236,347 kilograms).

The XB-70A is powered by six General Electric YJ93-GE-3 engines, grouped together in the tail. These are single-spool, axial-flow, afterburning turbojet engines, which have an 11-stage compressor section and 2-stage turbine. The YJ93-GE-3 has a normal power rating of 17,700 pounds of thrust (78.734 kilonewtons); military power, 19,900 pounds (88.520 kilonewtons); and maximum power, 28,000 pounds (124.550 kilonewtons). All ratings are at 6,825 r.p.m. and are continuous. A special high-temperature fuel, JP-6, is required. The engine is 19 feet, 8.3 inches (6.002 meters) long, 4 feet, 6.15 inches (1.375 meters) in diameter, and weighs 5,220 pounds (2,368 kilograms).

Test firing one the 62-001’s General Electric YJ93-GE-3 afterburning turbojet engines. (LIFE Magazine)

62-0001 had a cruise speed of 1,089 knots (1,253 miles per hour/2,016 kilometers per hour) at 35,000 feet (10,688 meters), and maximum speed of 1,721 knots (1,980 miles per hour/3,187 kilometers per hour) at 79,050 feet (24,094 meters)—Mach 2.97. During flight testing, the XB-70A reached a maximum of Mach 3.08 (1,777 knots) with a sustained altitude of 74,000 feet (22,555 meters).

Fuel was carried in 11 internal tanks in the wings and fuselage and the maximum capacity was 43,646 gallons (165,218 liters), giving the bomber a combat range of 3,786 nautical miles (4,357 statute miles/7,012 kilometers).

The B-70 was designed to carry two B-53 two-stage radiation-implosion thermonuclear bombs in its internal bomb bay. A maximum of fourteen smaller weapons could be carried.

XB-70A-1 62-0001 first flew 21 September 1964, and exceeded Mach 3 for the first time on its 17th flight, 14 October 1965. Its final flight was 4 February 1969.

The second prototype, XB-70A-2-NA 62-0207, was destroyed in a midair collision. The third Valkyrie, XB-70B-NA 62-0208, was cancelled before completion.

62-0001 is in the collection of the National Museum of the United States Air Force. It has made 83 flights with just 160 hours, 16 minutes, total flight time.

XB-70A-1-NA Valkyrie 62-0001 in cruise at very high altitude, 1968. (NASA)
XB-70A-1-NA Valkyrie 62-0001 in cruise at very high altitude, 1968. (NASA)

© 2019, Bryan R. Swopes