Category Archives: Space Flight

1 April 1960, 11:40:09 UTC, T minus Zero

TIROS-1/Thor-Able 148 launches from Launch Complex 17A at Cape Canaveral, Florida, 11:40:09 UTC, 1 April 1960. (NASA)

1 April 1960: TIROS-1, the first successful Earth-orbiting weather satellite, was launched at 6:40:09 a.m. (11:40:09 UTC), from Launch Complex 17A at the Cape Canaveral Air Force Station, Cape Canaveral, Florida, aboard a Thor-Able II liquid-fueled rocket. The satellite’s name is an acronym for Television Infra Red Observation Satellite.

The satellite was placed into a nearly-circular low Earth orbit with an apogee of 417.8 miles (672.4 kilometers) and perigee of 396.2 miles (637.6 kilometers). It is still in orbit and circles the Earth once every 1 hour, 37 minutes, 42 seconds. TIROS-1 remained operational for 78 days. It is still in orbit.

“TIROS undergoes vibration testing at the Astro-Electronic Products Division of RCA in Princeton, New Jersey.” (NASA)

TIROS-1 was built of aluminum and stainless steel. It had a diameter of 3 feet, 6 inches (1.067 meters) and height of 1 foot, 7 inches (0.483 meters.) The satellite weighed 270 pounds (122.47 kilograms). Two television cameras were installed on the satellite. They received electrical power from storage batteries charged by 9,200 solar cells. Images were stored on magnetic tape, then transmitted when in range of a ground receiving station. The first image, which showed large-scale cloud formations, was transmitted the day of the launch.

Technicians mount the TIROS-1 weather satellite to the Thor-Able upper stage carrier. (NASA)

The launch vehicle, Thor 148, consisted of a liquid-fueled Douglas Aircraft Company Thor DM-18A first stage (based on the SM-75 intermediate range ballistic missile) and an Aerojet Able-II second stage, which was developed from the Vanguard rocket series. The Thor-Able was 91 feet (27.8 meters) tall and 8 feet (2.44 meters) in diameter. It weighed 113,780 pounds (51,608 kilograms). The first stage was powered by a Rocketdyne LR79-7 rocket engine which burned RP-1 and liquid oxygen. The engine produced 170,560 pounds of thrust (758.689 kilonewtons) and burned for 165 seconds.

The Able-II second stage was powered by an Aerojet AJ-10 engine which produced 7,800 pounds of thrust (34.696 kilonewtons). The propellant was a hypergolic combination of nitric acid and UDMH (hydrazine). It burned for 115 seconds.

There were sixteen Thor-Able two-stage rockets launched. TIROS-1 was placed in orbit by the last of that series.

The first television image of Earth, transmitted by TIROS-1, 1 April 1960. (NASA)
The first television image of Earth, transmitted by TIROS-1, 1 April 1960. The image shows Maine, Nova Scotia, the Gulf of St. Lawrence and the Atlantic Ocean. (NASA)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

1 April 1959

The Mercury 7: Front row, left to right, LCDR Walter Marty Schirra, USN; CAPT Donald Kent Slayton, USAF; LCOL John Herschel Glenn, Jr., USMC; LT Malcolm Scott Carpenter, USN. Back row, left to right, LCDR Alan Bartlett Shepard, Jr., USN; CAPT Virgil Ivan Grissom, USAF; CAPT Leroy Gordon Cooper, Jr., USAF. (NASA)
The Mercury 7: Front row, left to right, LCDR Walter Marty Schirra, USN; CAPT Donald Kent Slayton, USAF; LCOL John Herschel Glenn, Jr., USMC; LT Malcolm Scott Carpenter, USN. Back row, left to right, LCDR Alan Bartlett Shepard, Jr., USN; CAPT Virgil Ivan Grissom, USAF; CAPT Leroy Gordon Cooper, Jr., USAF. (NASA)

“The selection procedures for Project Mercury were directed by a NASA selection committee, consisting of Charles Donlan, a senior management engineer; Warren North, a test pilot engineer; Stanley White and William Argerson, flight surgeons; Allen Gamble and Robert Voas psychologists; and George Ruff and Edwin Levy, psychiatrists. The committee recognized that the unusual conditions associated with spaceflight are similar to those experienced by military test pilots. In January 1959, the committee received and screened 508 service records of a group of talented test pilots, from which 110 candidates were assembled. Less than one month later, through a variety of interviews and a battery of written tests, the NASA selection committee pared down this group to 32 candidates.

“Each candidate endured even more stringent physical, psychological, and mental examinations, including total body x-rays, pressure suit tests, cognitive exercises, and a series of unnerving interviews. Of the 32 candidates, 18 were recommended for Project Mercury without medical reservations. On April 1, 1959, Robert Gilruth, the head of the Space Task Group, and Donlan, North, and White selected the first American astronauts. The “Mercury Seven” were Scott Carpenter, L. Gordon Cooper, Jr., John H. Glenn, Jr., Virgil I. “Gus” Grissom, Walter M. Schirra, Jr., Alan B. Shepard, Jr., and Donald K. “Deke” Slayton.”

40th Anniversary of the Selection of the Mercury Seven http://history.nasa.gov/40thmerc7/intro.htm

Facebooktwitterredditpinterestlinkedinmailby feather

30 March 1982, 16:04:46 UTC, T plus 192:04:46

Space Shuttle Columbia (OV-102) escorted by two NASA Northrop T-38 Talon chase planes, just prior to touch down at White Sands, New Mexico, 30 March 1982. (NASA)

30 March 1982: At 9:04:46 a.m. Mountain Standard Time (16:04:46 UTC), Space Shuttle Columbia (OV-102) completed its third space flight (STS-3) by landing at White Sands Space Harbor, the auxiliary space shuttle landing area at the White Sands Test Facility, west of Alamogordo, New Mexico.

Columbia rolled out 13,732 feet (4,185.5 meters), coming to a complete stop after 83 seconds. The duration of the flight was 192 hours, 4 minutes, 46 seconds.

Space Shuttle Columbia touches down at White Sands Space Harbor at the end of Mission STS-3, 30 March 19782. (NASA)

This was the only time that a space shuttle landed at White Sands.

During STS-116 (9–22 December 2006) WSSH was activated due to adverse weather conditions at both Kennedy and Edwards. However, Discovery (OV-103) was able to land at the Kennedy SLF.

WSSH was also used as a training facility for shuttle pilots to practice approaches while flying NASA’s Grumman C-11A Shuttle Training Aircraft (a modified Gulfstream II). One of these STAs, NASA 946 (N946NA), is in the collection of the Texas Air & Space Museum, Amarillo, Texas.

Runway 23, looking southwest toward the San Andres Mountain Range. (NASA)
White Sands Space Harbor Tower (NASA)

Located at an elevation of 3,913 feet (1,193 meters) above Sea Level near the northwest edge of a very large dry lakebed of gypsum sand, WSSH has two 15,000 foot (4,572 meters) runways, Runway 23/05 and Runway 17/35, each with 10,000 foot (3,048 meters) overuns at either end. A third runway, Runway 2/20, has  a length of 19,800 feet (6,035 meters), with no overruns.

Runway 17/35 replicates the runway at the Kennedy Space Center Shuttle Landing Facility in Florida, and 23/05 matches the dry lake runway at Edwards Air Force Base in California.

The runways are constructed of compacted natural gypsum with markings of asphalt. Lighting for night operations is provided by portable xenon light trailers positioned 1,000 feet (305 meters) into the overruns. Pads for eight helicopters are located close to the runway intersection. There is a control tower and modern visual and electronic landing aids.

Crash/Rescue personnel and equipment was provided by Hollomon Air Force Base.

Satellite image of the 275-square-mile White Sands National Monument located in New Mexico’s Tularosa Basin. WSSH is visible at the upper left corner. At the upper right are the famous gypsum sand dunes for which White Sands is named. (NASA)

Columbia was returned to Cape Canaveral 6 April 1982 aboard NASA 905, one of two Boeing 747 Shuttle Carrier Aircraft.

NASA 905, a Boeing 747 Shuttle Carrier Aircraft, departs White Sands Space Harbor with Columbia (OV-102), 2 April 1982. (NASA DFRC)

© 2019 Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

28 March 1935

Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution, Image Number 84-8949)
Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution)

28 March 1935: Near Roswell, New Mexico, Robert H. Goddard successfully launched the first gyroscopically-stabilized liquid-fueled rocket. In a 20-second flight, the A Series rocket, number A-5, reached an altitude of 4,800 feet (1,463 meters) and traveled 13,000 feet (3,962 meters) down range. Its speed was 550 miles per hour (885 kilometers per hour). During the flight, the rocket corrected its flight path several times.

"Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower." (NASA)
“Dr. Robert H. Goddard observes the launch site from his launch control shack while standing by the firing control panel. From here he can fire, release, or stop testing if firing was unsatisfactory. Firing, releasing, and stop keys are shown on panel. The rocket is situated in the launch tower.” (U.S. Air Force)
Goddard A-series rocket. (Clark University)

The A Series rockets were of varying lengths and mass. The representative A-series rocket displayed at the National Air and Space Museum is 15 feet, 4½ inches (468.63 centimeters) long with a diameter of 9 inches (22.86 centimeters). The span across the fins is 1 foot, 9½ inches (54.61 centimeters). It weighs 78.5 pounds (35.6 kilograms). The rocket was fueled with gasoline and liquid oxygen, pressurized with nitrogen.

A gyroscope controlled vanes placed in the engine’s exhaust, providing stabilization during powered flight.

Goddard flew the A-series 14 times between 15 January and 29 October 1935.

The National Air and Space Museum describes the rocket’s construction:

“Aluminum skin, thin gauge, a long tail section from bottom of fins to bottom of mid-section. Aluminum skin also on parachute section and nosecone wholly of spun aluminum except for steel attachment screw. Steel skin (for greater strength and insulation) below nosecone, over mid-section (over propellant tanks), and around small section above fins. One steel tube or pipe on each side of rocket, along propellant section; one smaller diameter copper tube on one side. Steel nozzle and other interior components. Fabric parachute.”

Goddard is the “Father of Modern Rocketry.” Many of his developments were copied by German engineers as they developed the V2 rocket of World War II. And this led to America’s own post-War rocket developments, including the mighty Saturn V moon rocket.

This photograph, taken at the launch site, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, Harry F. Guggenheim, Dr. Goddard, Charles A. Lindbergh, Nils T. Ljungquist and Charles Mansur. (U.S. Air Force)
This photograph, taken at the launch site in New Mexico, shows Dr. Goddard with his supporters and his assistants. Left to Right: Albert Kisk, machinist; Harry F. Guggenheim, philanthropist; Dr.Robert H. Goddard; Charles A. Lindbergh, aviator; Nils T. Ljungquist, machinist; and Charles Mansur, a welder. (U.S. Air Force)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. (NASM)
A 1935 A-Series rocket at the National Air and Space Museum, donated by Dr. Robert H. Goddard. It is constructed from parts of several A-series rockets which had been test flown. (NASM)
An April 1932 version of Goddard’s gyroscopic stabilization unit. (National Aeronautics and Space Administration GPN-2002-000137)

© 2020, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

27 March 1968

Yuri Gagarin photographed shortly before his death in 1968. (RSC Energia)

27 March 1968: Colonel Yuri Alekseevich Gagarin, Pilot-Cosmonaut of the Soviet Union,  was killed in the crash of a Mikoyan-Gurevich MiG-15UTI two-place trainer near the village of Novoselova, Vladamir Oblast, Russia.

Colonel Vladimir Sergeyevich Seregin, Hero of the Soviet Union.

Colonel Gagarin was on a routine training flight with an instructor, Colonel-Engineer Vladimir Sergeyevich Seregin. (Seregin was the commanding officer of the cosmonauts’ training regiment at the Cosmonaut Training Center.) The weather was poor, with rain, snow, wind and low clouds. His last reported altitude was 4,200 meters (13,780 feet).

A Sukhoi Su-15 on test flight inadvertently passed very close to the MiG at supersonic speed. The Sukhoi’s test had been planned for 10,000 meters (32,808 feet), but the pilot actually was flying much lower, passing through clouds, and the interceptor came within an estimated 15–20 meters (49–66 feet) of the trainer. Its wake vortices put Gagarin’s airplane into a spin from which he and Seregin were unable to recover. 55 seconds after Gagarin’s last radio transmission, the MiG-15 crashed. Both men were killed.

Colonel Yuri Alekseyevich Gagarin, Soviet Air Forces. (9 March 1934 – 27 March 1968)

Yuriy Alekseyevich Gagarin (Юрий Алексеевич Гагарин) was born at Klushino, a village in Smolensk Oblast, Russian Soviet Federative Socialist Republic, 9 March 1934. He was the third of four children of Alexey Ivanovich Gagarin and Anna Timofeyevna Gagarina. The family, workers on a collective farm, were displaced by the German invasion of 1941.

Gagarin was drafted by the Soviet Army in 1955 and was sent to flight school. Gagarin received a commission as a lieutenant in the Soviet Air Force in 1957 and was promoted to senior lieutenant two years later.

Lieutenant Gagarin was one of nineteen pilots selected for the space program in 1960. This was further reduced to six cosmonaut candidates. Gagarin and Gherman Titov were the final Two candidates for the first manned space launch, with Gagarin being chosen.

Yuri Gagarin before launch. (RIA Novosti)

Yuri Gagarin was the first human to fly into space when he orbited Earth aboard Vostok I, 12 April 1961. The spacecraft was a spherical Vostok 3KA-3 capsule carried aloft by a Vostok-K rocket. Gagarin made one orbit of the Earth and began reentry over Africa. As the spacecraft was descending through 7,000 meters (20,966 feet), he ejected from the capsule and parachuted to the ground, landing near Engels, Saratov Oblast, at 0805 UTC.

Gagarin statue, London.
Gagarin statue, London.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather