Category Archives: Space Flight

24 March 1960

Joseph Albert Walker in the cockpit of North American Aviation X-15A 56-6670, after a flight, 1960. (NASA)
Joseph Albert Walker in the cockpit of North American Aviation X-15A 56-6670, after a flight, 1960. (NASA)

24 March 1960: After North American Aviation’s Chief Engineering Test Pilot, Albert Scott Crossfield, had made the first flights in the new X-15 hypersonic research rocketplane (one gliding, eight powered), NASA Chief Test Pilot Joseph Albert Walker made his first familiarization flight.

The X-15, 56-6670, the first of three built by North American Aviation, Inc., was carried aloft under the right wing of a Boeing NB-52A Stratofortress, 52-003, flown by John E. Allavie and Fitzhugh L. Fulton.

The rocketplane was dropped from the mothership over Rosamond Dry Lake at 15:43:23.0 local time, and Joe Walker ignited the Reaction Motors XLR-11 rocket engine. The engine burned for 272.0 seconds, accelerating Walker and the X-15 to Mach 2.0 (1,320 miles per hour/2,124.3 kilometers per hour) and a peak altitude of 48,630 feet (14,822.4 meters). Walker landed on Rogers Dry Lake at Edwards Air Force Base after a flight of 9 minutes, 8.0 seconds.

Joe Walker made 25 flights in the three X-15 rocket planes from 24 March 1960 to 22 August 1963. He achieved a maximum Mach number of 5.92, maximum speed of 4,104 miles per hour (6,605 kilometers per hour) and maximum altitude of 354,200 feet (107,960 meters).

Joe Walker was killed in a mid-air collision between his Lockheed F-104N Starfighter and a North American Aviation XB-70A Valkyrie near Barstow, California, 1 June 1966.

The number one ship, 56-6670, made 81 of the 199 flights of the X-15 Program. It was the first to fly, and also the last, 24 October 1968. Today, it is in the collection of the Smithsonian Institution National Air and Space Museum.

North American Aviation, Inc. X-15A 56-6670 on Rogers Dry Lake, Edwards Air Force Base, California. (NASA)
North American Aviation, Inc. X-15A 56-6670 on Rogers Dry Lake, Edwards Air Force Base, California. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

23 March 1965

Gemini III lifts off at Launch Complex 19, Kennedy Space Center, Cape Canaveral, Florida, 14:24:00 UTC, 23 March 1965. (NASA)
Gemini III lifts off at Launch Complex 19, Cape Kennedy Air Force Station, Cape Canaveral, Florida, 14:24:00 UTC, 23 March 1965. (NASA)

23 March 1965: At 14:24:00 UTC, Gemini III was launched aboard a Titan II GLV  rocket from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Canaveral, Florida. Major Virgil I. (“Gus”) Grissom, United States Air Force, a Project Mercury veteran, was the Spacecraft Commander, and Lieutenant Commander John W. Young, United States Navy, was the pilot.

The purpose of the mission was to test spacecraft orbital maneuvering capabilities that would be necessary in later flights of the Gemini and Apollo programs. Gemini III made three orbits of the Earth, and splashed down after 4 hours, 52 minutes, 31 seconds. Miscalculations of the Gemini capsule’s aerodynamics caused the spacecraft to miss the intended splash down point by 50 miles (80 kilometers). Gemini III splashed down in the Atlantic Ocean, north east of the Turks and Caicos Islands. The recovery ship was USS Intrepid (CV-11).

Gus Grissom would later command the flight crew of Apollo 1. He was killed with his crew during the tragic fire  during a pre-launch test, 27 January 1967.

John Young served as Spacecraft Commander for Gemini 10, Command Module Pilot on Apollo 10, back-up commander for Apollo 13, commander Apollo 16, and back-up commander for Apollo 17. Later, he was commander of the maiden flight of the space shuttle Columbia STS-1 and again for STS-9 and was in line to command STS-61J.

The flight crew of Gemini III, John W. Young and Virgil I. Grissom. (NASA)
The flight crew of Gemini III, Lieutenant Commander John W. Young, U.S. Navy, and Major Virgil I. Grissom, U.S. Air Force. (NASA)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship but was approximately 7,000 pounds (3,175 kilograms)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust. It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust.

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.

The Gemini III spacecraft is displayed at the Grissom Memorial Museum, Spring Mill State Park, Mitchell, Indiana.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

23 March 1912–16 June 1977

Wernher von Braun, Director, Marshall Space Flight Center (NASA)
Dr. Wernher von Braun, Director, Marshall Space Flight Center, 1 May 1964. (NASA)

23 March 1912: Wernher Magnus Maximilian Freiherr von Braun, rocket engineer, was born at Wyrzysk, Province of Posen, in the German Empire, in what is now Poland. He was the second of three children of Magnus Alexander Maximillian von Braun, head of the Posen provincial government, and Emmy von Quistorp.

Wernher von Braun originally wanted to be a musician and composer, having learned to play the cello and piano at an early age. After reading a speculative book on space flight, though, his interests shifted.

In 1929, the 17-year-old von Braun joined Verein für Raumshiffahrt, the German rocketry association. He worked with Hermann Oberth in testing liquid-fueled rockets, based on successful rockets designed by Dr. Robert H. Goddard in the United States.

Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)
Rudolf Nebel (left) and Wernher von Braun with small liquid-fueled rockets, circa 1930. (Unattributed)

Von Braun graduated from Technische Hochschule Berlin in 1932, with a degree in mechanical engineering (Diplom-Ingenieur). Two years later, he received a doctorate in physics (Dr. phil.) at Friederich-Wilhelm University of Berlin. He also studied at ETH Zürich.

In Germany before World War II, Dr.-Ing. von Braun worked on the problems of liquid-fueled rockets and developed the Aggregat series of rockets, including the A4, which would become known as the V-2 (Vegeltungswaffe 2) military rocket. The German Army’s Ordnance Department gave von Braun a grant to further study liquid-fueled rockets, which he pursued at an artillery range at Kummersdorf, just south of Berlin. As rocketry work expanded, the tests were eventually moved to the Peenemünde Military Test Site on the island of Usedom on the Baltic coast, where von Braun was technical director under Colonel Dr. Ing. Walter R. Dornberger.

Wernher von Braun with a number of German officers at Peenemunde, March 1941. (Left to right) Oberst Dr. Walter Dornberger, General Friederich Olbricht, Major Heinz Brandt, von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0)
Prof. Dr.-Ing. Wernher von Braun with a number of German officers at Peenemünde, March 1941. (Left to right) Colonel Dr. Ing. Walter Dornberger (partially out of frame), General der Infanterie Friederich Olbricht*, Major Heinz Brandt, Prof. Dr. von Braun; others not identified. (Bundesarchiv, Bild 146-1978-Anh.024-03/CC-BY-SA 3.0) [*General Olbricht developed Operation Valkyrie, the plot to assassinate Hitler and overthrow the Nazi regime.]
Aggregat 4 prototype (probably V-3) ready for launch at Prüfstand VII, August 1942. (Bundesarchiv)

The first successful launch of the A4 took place 3 October 1942. By the end of World War II, Nazi Germany had launched more than 3,200 V-2 rockets against Belgium, England, France and The Netherlands.

As World War II in Europe came to a close and the collapse of Nazi Germany was imminent, von Braun had to choose between being captured by the Soviet Red Army or by the Allies. He surrendered to the 324th Infantry Regiment, 44th Infantry Division, United States Army in the Bavarian Alps, 2 May 1945.

Dornberger, Herber Axter, von Braun and Hans Lindenberg, 3 May 1945. (U.S. Army)
Major-General Dr. Ing. Walter R. Dornberger; Lieutenant-Colonel Herbert Axster, Dornberger’s chief of staff; Prof. Dr.-Ing. Wernher von Braun (with left arm in cast); and Hans Lindenberg, chief propulsion engineer; at Reutte, Austria, 3 May 1945. (Technician 5th Class Louis Weintraub, U.S. Army)

Under Operation Paperclip, Wernher von Braun and many other scientists, engineers and technicians were brought to the United States to work with the U.S. Army’s ballistic missile program at Fort Bliss, Texas, White Sands Proving Grounds, New Mexico, and the Redstone Arsenal, Huntsville, Alabama.

Sufficient parts and materiel and been transferred from Germany to construct more than one hundred V-2 rockets for testing at White Sands. Over a five year period, there were 67 successful launches, but it is considered that as much knowledge was gained from failures as successes.

Dr. von Braun with V-2 rocket compnents in Texas, circa 1945. (Unattributed)
Dr. von Braun with V-2 rocket components at White Sands Proving Grounds, New Mexico, 1 November 1946. (Thomas D. McAvoy)

In 1950, von Braun and his team were sent to Redstone Arsenal, Huntsville, Alabama, where they worked on more advanced rockets. The first production rocket was the short-range ballistic missile, the SSM-A-14 Redstone, which was later designated PGM-11. This rocket was capable of carrying a 3.8 megaton W39 warhead approximately 200 miles (322 kilometers) The first Redstone was launched at Cape Canaveral Air Force Station, 20 August 1953. Modified Redstone MRLV rockets were used to launch the first Mercury spacecraft with NASA astronauts Alan Shepherd and Gus Grissom. Von Braun later worked on the U.S. Army’s Jupiter-A intermediate range ballistic missile. A modified Jupiter-C was used to launch Explorer 1, the United States’ first satellite.

Explorer 1 launch, Launch Complex 26A, Cape Canaveral Air Force Station, 1 February 1958, 03:48:00 UTC. (NASA)
Mercury-Redstone 4 (Liberty Bell 7) launch at Pad 5, Cape Canaveral Air Force Station, 12 20 36 UTC, 21 July 1961. (NASA)

Wernher von Braun travelled to Germany in 1947 to marry his cousin, Maria Luise von Quistorp, and then returned to the United States. He became a naturalized citizen of the United States of America in 1955.

The von Braun family, circa 1955 (U.S. Army)
Prof. Dr. von Braun with his family, circa 1957. Left to right, Maria Luise von Braun, Margrit Cécile von Braun, Dr. von Braun and Iris Careen von Braun. (U.S. Army)

In 1960 von Braun and hist team were transferred from the Army Ballistic Missile Agency to NASA’s new Marshall Space Flight Center at Redstone Arsenal. He was now able to pursue his original interest, manned flight into space. Work proceeded on the Saturn rocket series, which were intended to lift heavy payloads into Earth orbit. This resulted in the Saturn A, Saturn B and the Saturn C series, ultimately becoming the Saturn V moon rocket.

With the Apollo Program coming to an end, Dr. von Braun left NASA in 1972. A year later, he was diagnosed with kidney cancer. Wernher von Braun died of pancreatic cancer, 17 June 1977 at the age of 65 years.

Apollo 4 Saturn V (AS-501) on the launch pad at sunset, the evening before launch, 8 November 1967. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 March 1966, 17:41:02 UTC, T minus Zero

Gemini VIII lifts off from Launch Complex 19, Kennedy Space Center, 17:41:02 UTC, 16 March 1966. (NASA)
Gemini VIII lifts off from Launch Complex 19, Cape Kennedy Air Force Station, 17:41:02 UTC, 16 March 1966. (NASA)

16 March 1966: At 17:41:02 UTC (12:41:02 p.m. Eastern Standard Time) Gemini VIII, with astronauts Neil A. Armstrong and David R. Scott, lifted off from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida, aboard a Titan II GLV booster. Their mission was to rendezvous and dock with an Agena Target Vehicle launched earlier aboard an Atlas rocket.

David R. Scott and Neil A. Armstrong, flight crew of Gemini VIII. (NASA)
David R. Scott and Neil A. Armstrong, flight crew of Gemini VIII. (NASA)

The docking, the first ever of two vehicles in Earth orbit, was successful, however after about 30 minutes the combined vehicles begin rolling uncontrollably. The Gemini capsule separated from the Agena, and for a few minutes all seemed normal. But the rolling started again, reaching as high as 60 r.p.m.

The astronauts were in grave danger. Armstrong succeeded in stopping the roll but the Gemini’s attitude control fuel was dangerously low. The cause was determined to be a stuck thruster, probably resulting from an electrical short circuit.

The mission was aborted and the capsule returned to Earth after 10 hours, 41 minutes, landing in the Pacific Ocean. U.S. Air  Force pararescue jumper (“PJs”) parachuted from a C-54 and attached a flotation collar to the Gemini capsule. The astronauts were recovered by the Gearing-class destroyer USS Leonard F. Mason (DD-852).

The Gemini VIII spacecraft is displayed at the Neil Armstrong Air and Space Museum, Wapakoneta, Ohio.

Gemini VIII with flotation collar. (NASA)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship but was approximately 7,000 pounds (3,175 kilograms)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust. It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust.

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.

The Atlas-Agena Target vehicle takes off at Launch Complex 14, 17:00:00 UTC, 16 March 1966. (NASA)
The Atlas-Agena Target Vehicle takes off at Launch Complex 14, Cape Kennedy Air Force Station, 15:00:03 UTC, 16 March 1966. (NASA)

The docking, the first ever of two vehicles in Earth orbit, is successful, however after about 30 minutes the combined vehicles begin rolling uncontrollably. The Gemini capsule separates and for a few minutes all seems normal. But the rolling starts again, reaching as high as 60 r.p.m. The astronauts are in grave danger. Armstrong succeeds in stopping the roll but the Gemini’s attitude control fuel is dangerously low. The cause is determined to be a stuck thruster. The mission is aborted and the capsule returns to Earth after 10 hours, 41 minutes, landing in the Pacific Ocean.

Agena Target Vehicle as seen from Gemini VIII. (NASA)
Agena Target Vehicle as seen from Gemini VIII. (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather