Category Archives: Space Flight

14 November 1969, 19:15:13 UTC, T plus 2:53:13.94

This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)
This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)

14 November 1969: At 19:09:22 UTC, the Apollo 12 S-IVB third stage engine reignited for the Trans Lunar Injection maneuver.

One of the necessary features of the Rocketdyne J-2 engine was its ability to restart a second time. The third stage was first used to place the Apollo 12 spacecraft into Earth orbit and was then shutdown. When the mission was ready to proceed toward the Moon, the J-2 was re-started. Using liquid hydrogen and liquid oxygen for propellant, Apollo 12’s S-IVB burned for 5 minutes, 41 seconds. The engine was shut down at 19:15:03 UTC. Trans Lunar Injection was at T plus 2 hours, 53 minutes, 13.94 seconds.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 November 1969, 16:24:42.4 UTC, T plus 2:42.4

Saturn V S-IC first stage separation. (NASA)
Saturn V S-IC first stage separation. (NASA)

14 November 1969, 16:24:43.4 UTC: The Apollo 12 Saturn 5 passes 42 miles (67 kilometers) altitude at 5,145 miles per hour (8,280 kilometers per hour). The rocket reaches it maximum inertial acceleration of 3.91 g.

At T plus 2 minutes, 42.4 seconds, Apollo 12’s S-IC first stage separates. 0.8 seconds later, the S-II stage Rocketdyne J-2 engines ignited.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 November 1969, 16:22:00.68 UTC, T plus 000.00.00.68

Apollo 12 Saturn V (AS-507) lifts off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida, at 16:22:00 UTC, 14 November 1969. (NASA image scanned and remastered by Dan Beaumont)

14 November 1969: At 16:22:00.68 UTC (11:22:00 a.m., Eastern Standard Time), the Apollo 12 Saturn V (AS-507) lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida.

This was the second manned space flight to the Moon. The flight crew were Commander Charles “Pete” Conrad, Jr., United States Navy, Mission Commander; Commander Richard F. Gordon, Jr., U.S. Navy, Command Module Pilot; Commander Alan L. Bean, U.S. Navy, Lunar Module Pilot.

Their destination was Oceanus Procellarum.

The crew of Apollo 12: Charles “Pete” Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean. (NASA)

Two lightning strikes 36.5 seconds after liftoff caused the spacecraft’s automatic systems to shut down three fuel cells, leaving Apollo 12 operating on battery power. A third electrical disturbance at T + 52 seconds caused the “8 ball” attitude indicator in the cockpit to fail. A quick thinking ground controller, the “EECOM,” called “Try SCE to Aux.” Alan Bean recalled this from a simulation a year earlier, found the correct switch and restored the failed systems.

The lightning discharge was caused by the Apollo 12/Saturn V vehicle accelerating through rain at approximately 6,300 feet (1,950 meters). There were no thunderstorms in the area. Post-flight analysis indicates that it is probable that the lightning discharge started at the top of the Apollo 12/Saturn V vehicle. Energy of the discharge was estimated at 10⁴–10⁸ joules.

Lightning discharge near Launch Complex 39A (NASA)

Soon after passing Mach 1, the Saturn V rocket encountered the maximum dynamic pressure (“Max Q”) of 682.95 pounds per square foot (0.327 Bar) as it accelerated through the atmosphere.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, .2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed approximately 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,851 kilonewtons).² These engines were ignited 6.50 seconds prior to Range Zero and the outer four burned for 161.74 seconds. The center engine was shut down after 135.24 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (5,165.5 kilonewtons).³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

¹ The AS-507 total vehicle mass at First Stage Ignition (T – 6.50 seconds) was 6,137,868  pounds (2,784,090 kilograms).

² Post-flight analysis gave the total thrust of AS-507’s S-IC stage as 7,594,000 pounds of thrust (33,780 kilonewtons).

³ Post-flight analysis gave the total thrust of AS-507’s S-II stage as 1,161,534 pounds of thrust (5,166.8 kilonewtons).

⁴ Post-flight analysis gave the total thrust of AS-507’s S-IVB stage as 206,956 pounds of thrust (920.6 kilonewtons) during the first burn; 207,688 pounds (923.8 kilonewtons) during the second burn.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

12 November 1995, 12:30:43.071 UTC, T minus Zero

Space Shuttle Atlantis (STS-74) lifts off from Pad 39A, 7:30:43 a.m., EST, 12 November 1995. (NASA)
Space Shuttle Atlantis (STS-74) lifts off from Pad 39A, 7:30:43 a.m., EST, 12 November 1995. (NASA)

12 November 1995, 12:30:43.071 UTC, T minus Zero: Space Shuttle Atlantis (STS-74) is launched from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida.

The mission commander was Colonel Kenneth Donald Cameron, United States Marine Corps, and Colonel James Donald Halsell, Jr., United States Air Force, was the shuttle pilot.

There were three mission specialists on this flight: Colonel Chris Austin Hadfield, Royal Canadian Air Force; Colonel Jerry Lynn Ross, U.S. Air Force; and Colonel William Suries McArthur, Jr., United States Army. Colonels Cameron, Halsell, Hadfield and McArthur had all been military test pilots before joining the space program. Colonel Ross was a flight test engineer.

Left to right: Colonel William S. McArthur, Jr., U.S. Army; Colonel James D. Halsell, Jr., U.S. Air Force (seated); Colonel Jerry L. Ross, U.S. Air Force; Colonel Kenneth D. Cameron, USMC (seated); Colonel Chris A. Hadfield, Royal Canadian Air Force/Canadian Space Agency. (NASA)

Mission STS-74 was the second orbital docking with the Russian space station Mir. The astronauts installed a docking module which had been carried in Atlantis‘ cargo bay. This allowed the shuttle to dock with the space station, and supplies and equipment were transferred during the three days the two spacecraft were docked.

Space Station Mir, photographed from Space Shuttle Atlantis during Mission STS-74. (NASA)

Atlantis landed at Kennedy Space Center 12:01:27 p.m., EST, on 20 November. The duration of the mission was  8 days, 4 hours, 30 minutes, 44 seconds.

Space Shuttle Atlantis (OV-104) lands at the Kennedy Space Center, Cape Canaveral, Florida, at the end of Mission STS-74, 12:01:27 p.m., EST, 20 November 1995.. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

12 November 1981, 15:09:59 UTC, T minus Zero

Space Shuttle Columbia (OV-102) is launched from LC-39A, Kennedy Space Center, 15:09:59 UTC, 12 November 1981. (NASA) KSC-81PC-0362

12 November 1981, 15:09:59 UTC, T minus Zero: At 10:09:59 a.m., Eastern Standard Time, Space Shuttle Columbia (OV-102) lifted of from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida.

On board were two NASA astronauts, Colonel Joe Henry Engle,¹ United States Air Force, the mission commander, and Captain Richard Harrison Truly, United States Navy, shuttle pilot.

The flight crew of Columbia (STS-2), left to right, Colonel Joe H. Engle, United States Air Force, and Captain Richard H. Truly, United States Navy. Both astronauts are wearing David Clark Company S1030A Ejection Escape Suits. (NASA)

This was the very first time that a manned spacecraft had returned to space on a second mission.

Space Shuttle Columbia (STS-2) climbing after liftoff, 12 November 1981. (NASA)

Columbia entered a Low Earth Orbit at an altitude of 157 nautical miles (181 statute miles/291 kilometers).

At liftoff the vehicle weighed 2,030,250 kilograms (4,475,943 pounds).

Aerial view of the launch of Columbia (STS-2) 12 November 1981. (NASA)
Columbia (STS-2) accelerates toward Earth orbit, 12 November 1981. (NASA)

STS-2 was planned as a five-day mission. In addition to continued testing of the orbital vehicle, on this flight the Remote Manipulator System (the “robot arm”) would be operated for the first time in space. A number of other experiments were carried in the cargo bay. However, when one of the three fuel cells producing electrical power and water failed, the mission was cut short.

Columbia landed on Rogers Dry Lake at Edwards Air Force Base, California, at 1:23 p.m. PST, 14 November 1981. The shuttle completed 37 orbits. The total duration of the flight was 2 days, 6 hours, 13 minutes, 13 seconds.

Space Shuttle Columbia (STS-2) glides overhead Edwards Air Force Base in California, 14 November 1981. (NASA S81-39564/GPN-2000-001346)

¹ Joe Engle qualified as an astronaut during the X-15 Program, when he flew the  # 3 rocketpane, 56-6672, to 280,600 feet (85,527 meters), 29 June 1965, and he is the only person to have done so prior to entering NASA’s manned space flight program.

X-15 Astronaut Joe Engle and his wife, Mary, with their children Laurie and Jon, and North American Aviation X-15 56-6672. (U.S. Air Force)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather