Daily Archives: February 26, 2024

26 February 1966, 16:12:01.37 UTC (T plus 0.37)

Apollo-Saturn IB AS-201 launch from Pad 34, Kennedy Space Center, 26 February 1966. (NASA)

26 February 1966: AS-201, the first Apollo/Saturn IB, was launched, carrying the first complete Block 1 Apollo Command and Service Module on an unmanned suborbital test flight. The launch took place at Launch Complex 34, Cape Kennedy Air Force Station, Cape Kennedy, Florida.

An illustration of an Apollo/Saturn IB space vehicle, with approximate dimensions. (Department of Special Collections, M. Louis Salmon Library, University of Alabama, via heroicrelics.org)

This flight was a demonstration of the combined Apollo Command Module and the Service Module. The second production Apollo capsule, CM-009, and the first production service module, SM-009, were launched by the first Saturn IB, SA-201.¹ (When combined, the capsule and service module are referred to as the CSM.)

The command to ignite the eight H-1 first stage engines was sent from the Mission Control Room at T-3.038 (16:11:56.962 UTC).² The engines ignited at T-2.45 and began to build thrust. First motion occurred at T+0.11.

Liftoff ³ was at 16:12:01.37 UTC, T+0.37. AS-201 climbed vertically for 11.2 seconds before beginning a pitch and roll maneuver which carried the space vehicle to its planned trajectory. Control of the mission was shifted from the Cape Kennedy Air Force Station to Mission Control at the Manned Spacecraft Center, Houston, Texas. Flight Director Glynn S. Lunney was now in charge.

AS-201 reached Mach 1 at T+65.7. The vehicle experienced its maximum dynamic pressure (max q) at T+77.7.

Maximum acceleration was reached at T+141.5, just as the first stage engines were shut down.

The S-IB first stage inner engines cutoff (IECO) occurred at T+141.5, and outer engine cutoff (OECO), at T+146.9. The vehicle had reached an altitude of 31.4 nautical miles (36.1 statute miles/58.2 kilometers) and was 33.9 nautical miles (39.0 statute miles/62.8 kilometers) downrange. It was traveling at 7,499.66 feet per second (5,113.4 miles per hour/8,229.2 kilometers per hour). The first stage was jettisoned.

Apollo/Saturn IB AS-201 first stage separation. (NASA)

The S-IVB second stage engine ignition occurred at T+149.3. The Launch Escape System (LES) was jettisoned at T+172.6. The vehicle continued to accelerate until its J-2 engine cut off at T+602.9. The vehicle had now reached an altitude of 141.2 nautical miles (162.5 statute miles/261.5 kilometers) and was 857.9 nautical miles (987.3 statute miles/1,588.8 kilometers) downrange, traveling 22,769.23 feet per second (15,524.5 miles per hour/24,984.2 kilometers per hour). The S-IVB and Command and Service Module separated at T+844.9.

The Apollo CSM reached a maximum altitude (apogee) of 265.7 nautical miles (305.8 miles/492.1 kilometers) at T+1020.0. As it began to descend, the Service Module’s Service Propulsion Subsystem (SPS) was tested. The SPS was powered by a non-throttleable, restartable, AJ10-137 rocket engine, built by Aerojet General Corporation of Azusa, California. This engine was fueled by Aerozine 50, a hypergolic 50:50 mixture of Unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (N2O4). It produced 20,500 pounds of thrust (91.19 kilonewtons) in vacuum. It was designed for a 750 second burn, or 50 restarts during a flight. The first burn was from T+1211.2 –1395.2 (184 seconds), and the second, from T+1410.7–1420.7 (10 seconds). The engine did not operate exactly as planned during the flight. Thrust was erratic, possibly as a result of helium ingestion into the engine oxidizer feed line.

CM/SM separation occurred at T+1455.0, at an altitude of 138.9 nautical miles (159.8 statute miles/257.2 kilometers) and 3,660 nautical miles (4,211 statute miles/6,778 kilometers) down range. The command module was now traveling at a speed of  25968 fps (17,705 miles per hour/28,494 kilometers per hour). During reentry, the maximum deceleration was 14.3 gs. The Apollo capsule landed near Ascension Island in the South Atlantic Ocean, 4,577 nautical miles (5,267 statute miles/8,477 kilometers) from Cape Canaveral, and about 45 miles from the primary recovery ship. (S. 8.18°, W 11.15°) Total duration of the flight was 37 minutes, 19.7 seconds.

The Apollo spacecraft was recovered by USS Boxer (LPH- 4), a Wasp-class amphibious assault ship, and taken to Norfolk, Virginia.

Mission AS-201 was successful, though several problems occurred during the flight. These were identified and corrected on the following production vehicles.

Apollo/Saturn IB AS-201 at Launch Complex 34, 4 February 1966. (NASA S-66-21307)

Apollo/Saturn IB AS-201 was approximately 223 feet, 4 inches (68.072 meters) tall. The total vehicle weight was 1,320,220 pounds (598,842 kilograms).

The Apollo command module of AS-201 was Spacecraft 009 (CM-009), a Block I capsule. (Various crew equipment had not been installed for this test flight.) The Apollo was a conical space capsule designed and built by North American Aviation’s Space and Information Systems Division in Downey, California, to carry a crew of three astronauts on space missions of two weeks or longer. The capsule had a length of 11 feet, 1.5 inches (3.3909 meters) and maximum diameter of 12 feet, 10 inches (3.9116 meters). The service module, also built by North American Aviation, was 12 feet, 11 inches (3.937 meters) long and 12 feet, 10 inches (3.9116 meters) in diameter.

Construction of CM-009 began in 1963. It was accepted 20 October 1965 and shipped to the Kennedy Space Center, arriving at the Manned Spacecraft Operations Building (MSOB) on 25 October. The CSM was stacked on the vehicle 26 December 1965. The Launch Escape System was added 24 January 1966.

Between the CSM and the Saturn IB was the Spacecraft-Lunar Module Adapter (SLA) structure, also built by NAA. This conical section had a length of 28 feet, 0 inches (8.5344 meters) and tapered from a diameter of 12 feet, 10 inches (3.9116 meters) to 21 feet, 8 inches (6.604 meters). No Lunar Module was carried on this flight.

Saturn IB SA-201 at Launch Complex 34. The launch vehicle consists of an S-IB first stage, S-IVB second stage, and an Instrumentation Unit. (NASA 65-H-2067)

The Saturn IB two-stage launch vehicle was numbered SA-201. It consisted of an S-IB first stage, an S-IVB second stage, an Instrumentation Unit, and various fairings and adapters. It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

The Saturn IB SA-201 S-IB first stage is lifted onto Launch Pad 34, 19 August 1965. Several of the stage’s eight stabilizing fins are not present during this maneuver. (NASA KSC-65C-5347)

The S-IB first stage was built by Chrysler Corporation Space Division at the Michoud Assembly Facility near New Orleans, Louisiana. The S-IB was 80 feet, 2 inches (24.435 meters) long, with a diameter of 21 feet, 5.0 inches (6.528 meters). The empty weight of this stage was 92,500 pounds (41,957 kilograms). Eight Redstone rocket fuel tanks containing the RP-1 fuel (a highly-refined kerosene) surrounded a Jupiter rocket tank containing the liquid oxygen oxidizer (LOX). It had a propellant capacity of 880,500 pounds (399,388 kilograms). The stage had eight stabilizing fins.

The S-IB was powered by eight Rocketdyne H-1 engines. The H-1s were built by the North American Aviation Rocketdyne Division, Canoga Park, California. Total thrust of the S-IB stage was 1,666,460 pounds (7,417.783 kilonewtons) at Sea Level,⁴ and it carried sufficient propellant for a maximum 4 minutes, 22.57 seconds of burn. This could lift the vehicle to an altitude of 37 nautical miles (69 kilometers).

A Saturn IB S-IVB second stage with its Rocketdyne J-2 engine and adapter section. (This S-IVB was part of Saturn IB SA-206.) (NASA 67-HC-26)

The S-IVB second stage was assembled at the Douglas Aircraft Company Missile & Space Division, Huntington Beach, California. The S-IVB was 61 feet, 4.555 inches (18.708497 meters) long, with a maximum diameter of 21 feet, 8.0 inches (6.604 meters). The second stage had an empty weight of 23,400 pounds (10,614 kilograms), and fuel capacity of 228,500 pounds (103,646 kilograms).

It was powered by a single Rocketdyne J-2 engine, fueled by liquid hydrogen (LH2) and LOX. The J-2 produced 229,714 pounds of thrust (1,021.819 kilonewtons), at high thrust, and 198,047 pounds (880.957 kilonewtons) at low thrust). The second stage carried enough fuel for 7 minutes, 49.50 seconds burn at high thrust.

The Instrumentation Unit, containing the Saturn’s guidance systems and attached to the top of the S-IVB stage, was designed by NASA’s Manned Space Flight Center (MSFC), and built by IBM at the Space Systems Center, Huntsville, Alabama. It was 3 feet, 0 inches (0.9 meters) tall with a diameter of 22 feet, 0 inches (6.7056 meters).

After being recovered, the AS-201 Apollo command module was used for drop tests. It is at the Strategic Air and Space Museum, Ashland, Nebraska.

Apollo Command Module CM-009. (HrAtsuo)
Apollo Command Module CM-009 at the Strategic Air and Space Museum, Ashland, Nebraska. (HrAtsuo)

¹ NASA vehicle designations can sometimes be confusing. In this case, “AS-201” designates the all-up Apollo/Saturn IB Space Vehicle, number 201, including the first and second stages, the instrument package, lunar module adapter, service module, command module CM-009, and Launch Escape System (LES). “Spacecraft SC-009” refers to the LES, the CSM and the SLA. The “Saturn IB SA-201,” refers to just the two-stage launch vehicle, number 201: the S-IB first stage, S-IVB second stage, and the Instrumentation Unit. It does not include the payload.

² Range Zero, T-0 (“tee minus zero”), is the last full second before liftoff. This is the time reference for all mission events. In this case, T-0 was 16:12:01.000 UTC (11:12:01 a.m., Eastern Standard Time).

³ Lift off is defined as the instant of Instrumentation Unit umbilical disconnect. This is distinct from “First Motion.”

⁴ The total thrust the the eight H-1 engines of the S-IB first stage was only slightly more than that of just one of the five Rocketdyne F-1 engines of the Saturn V’s S-IC first stage booster.

© 2024, Bryan R. Swopes

26 February 1955

North American Aviation production test pilot George Franklin Smith with a North American F-100A Super Sabre (NASM)

26 February 1955: Although it was his day off, North American Aviation production test pilot George Franklin Smith stopped by the office at Los Angeles Airport (today, known as Los Angeles International airport, or simply “LAX”, its international airport identifier). The company’s flight  dispatcher told him that a brand-new F-100A-20-NA Super Sabre, serial number 53-1659, was sitting on the flight line and needed to be test flown before being turned over to the Air Force.

North American Aviation production test pilot George F. Smith (left) walks away from an F-100 Super Sabre. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineeers)
North American Aviation production test pilot George F. Smith (left) walks away from an F-100 Super Sabre. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineeers)

Smith was happy to take the flight. He departed LAX in full afterburner and headed off shore, climbing to 35,000 feet (10,668 meters) over the Pacific Ocean to start the test sequence.

A North American F-100A-1-NA Super Sabre, 52-5757 (the second production airplane) takes off at Los Angeles International Airport. (This airplane, flown by NAA test pilot Bob Hoover, crashed east of Palmdale, California, 7 July 1955, when he could not recover from a flat spin. Hoover safely ejected but the Super Sabre was destroyed.) (North American Aviation, Inc.)

But it was quickly apparent that something was wrong: The flight controls were heavy, and then there was a hydraulic system failure that caused the Super Sabre pitch down into a dive. Smith couldn’t pull it out of the dive and the airplane’s speed rapidly increased, eventually passing Mach 1.

Smith was unable to regain control of the F-100. He had no choice but to bail out. As he ejected, Smith read the instruments: the Mach meter indicated Mach 1.05—785 miles per hour (1,263 kilometers per hour)—and the altitude was only 6,500 feet (1,981 meters).

George F. Smith recovering in hospital after his supersonic ejection. (Getty Images)
Smith recovering in hospital after his supersonic ejection. (Getty Images)

The force of the wind blast hitting him as he came out of the cockpit knocked him unconscious. Estimates are that he was subjected to a 40 G deceleration. His parachute opened automatically and he came down approximately one-half mile off Laguna Beach. Fortunately he hit the water very close to a fishing boat crewed by a former U.S. Navy rescue expert.

The F-100 dived into the Pacific Ocean approximately ¼-mile (0.4 kilometers) offshore between Dana Point and Laguna Beach.

George Smith was unconscious for six days, and when he awoke he was blind in both eyes. After four surgeries and seven months in the hospital, he recovered from his supersonic ejection and returned to flight status.

North American Aviation, Inc. F-100A-20-NA Supre Sabre 53-1646. This fighter is from the same production block as the Super Sabre flown by George F. Smith, 53-1659, 26 February 1955. (Unattributed)

George F. Smith appears in this brief U.S. Air Force informational film:

The North American Aviation F-100 Super Sabre was designed as a supersonic day fighter. Initially intended as an improved F-86D and F-86E, it soon developed into an almost completely new airplane. The fuselage incorporated the “area rule,” a narrowing in the fuselage width at the wings to increase transonic performance, similar to the Convair F-102A.

The Super Sabre had a 49° 2′ sweep to the leading edges of the wings and horizontal stabilizer. The ailerons were placed inboard on the wings and there were no flaps, resulting in a high stall speed in landing configuration. The horizontal stabilizer was moved to the bottom of the fuselage to keep it out of the turbulence created by the wings at high angles of attack. The F-100A had longer wings and a distinctively shorter vertical fin than the YF-100A. The upper segment of the vertical fin was swept 49° 43′.

North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)

There were two service test prototypes, designated YF-100A, followed by the production F-100A series. The first ten production aircraft (all of the Block 1 variants) were used in the flight testing program.

The F-100A Super Sabre was 47 feet, 1¼ inches (14.357 meters) long with a wingspan of 36 feet, 6 inches (11.125 meters). With the shorter vertical fin than the YF-100A, the initial F-100As had an overall height of 13 feet, 4 inches (4.064 meters), 11 inches (27.9 centimeters) less than the YF-100A.

The F-100A had an empty weight of 18,135 pounds (8,226 kilograms), and gross weight of 28,899 pounds (13,108 kilograms). Maximum takeoff weight was 35,600 pounds (16,148 kilograms). It had an internal fuel capacity of 755 gallons (2,858 liters) and could carry two 275 gallon (1,041 liter) external fuel tanks.

Following North American Aviation test pilot George Welch’s fatal accident, 12 October 1954, NACA designed a new vertical fin for the F-100A. It was taller but also had a longer chord. This resulted in a 10% increase in area. (NASA E-1573)

The early F-100As were powered by a Pratt & Whitney Turbo Wasp J57-P-7 afterburning turbojet engine. It was rated at 9,700 pounds of thrust (43.148 kilonewtons) for takeoff, and 14,800 pounds (65.834 kilonewtons) with afterburner. Later production aircraft used a J57-P-39 engine. The J57 was a two-spool axial flow turbojet which had a 16-stage compressor, and a 3-stage turbine. (Both had high- and low-pressure stages.) The engine was 15 feet, 3.5 inches (4.661 meters) long, 3 feet, 5.0 inches (1.041 meters) in diameter, and weighed 4,390 pounds (1,991 kilograms).

Test Pilot A. Scott Crossfield flew this F-100A-5-NA, 52-5778, in flight testing at the NACA High Speed Flight Station, October–December 1954. (NASA)

The Super Sabre was the first U.S. Air Force fighter capable of supersonic speed in level flight. It could reach 760 miles per hour (1,223 kilometers) at Sea Level. (Mach 1 is 761.1 miles per hour, 1,224.9 kilometers per hour, under standard atmospheric conditions.) Its maximum speed was 852 miles per hour (1,371 kilometers per hour) at 35,000 feet (10,668 meters). The service ceiling was 44,900 feet (13,686 meters). Maximum range with external fuel was 1,489 miles (2,396 kilometers).

The F-100 was armed with four M-39 20 mm autocannons, capable of firing at a rate of 1,500 rounds per minute. The ammunition capacity of the F-100 was 200 rounds per gun.

North American Aviation built 199 F-100A Super Sabres at its Inglewood, California, plant before production shifted to the F-100C fighter bomber variant. Approximately 25% of all F-100As were lost in accidents.

This is the fifth production F-100A-1-NA Super Sabre, 52-5760, in flight southeast of San Bernardino, California. In this photograph, FW-760 has the taller vertical fin that was designed to improve the Super Sabre’s controllability. (U.S. Air Force)

© 2019, Bryan R. Swopes