Tag Archives: Cape Kennedy Air Force Station

28 November 1964, 14:22:01.309 UTC

Mariner 4 lifts off from LC-12, Cape Kennedy Air Force Station, 9:22 a.m. EST, 28 November 1964. (NASA)

28 November 1964, 14:22:01.309 UTC: Mariner 4, a space probe designed and built by the Jet Propulsion Laboratory (JPL), lifted off from Launch Complex 12 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida. The two-stage launch vehicle consisted of an Atlas D, number 288, and an Agena D, number 6932.

The Mariner 4/Agena D separated from the first stage Atlas booster at 14:27:23 UTC. A 2 minute, 24 second burn placed the Mariner/Agena in an Earth orbit. At 15:02:53, a one minute, 35 second burn placed the vehicle into a Mars Transfer Orbit. Mariner 4 separated from the Agena D at 15:07:09 UTC. Mariner then went into cruise mode.

Mariner 4 (NASA)
Mariner 4 during Weight Test (NASA/JPL 293_7150Bc)

The mission of Mariner 4 was to “fly by” Mars to take photographic images and gather scientific data, then relay this to tracking stations on Earth. The spacecraft carried an imaging system, cosmic dust detector, cosmic-ray telescope, magnetometer, radiation detector, solar plasma probe and an occultation experiment.

Mariner 4 overall height, including the mast, was 289 centimeters. The body of the spacecraft had a width of 127 centimeters (4 feet, 2 inches) across the diagonal, and was 45.7 centimeters (1 foot, 6 inches high. 260.8 kilograms (118.3 pounds). Power was supplied by four solar panels, each 176 centimeters (5 feet, 9.3 inches) long and 90 centimeters (2 feet, 11.4 inches) wide. The panels had 28,224 individual solar cells capable of producing 310 watts at Mars.

The rocket, a “1-½ stage” liquid-fueled Atlas LV-3, number 228, was built by the Convair Division of General Dynamics at San Diego, California. It was developed from a U.S. Air Force SM-65 Atlas D intercontinental ballistic missile, modified for use as an orbital launch vehicle.

The LV-3 was 65 feet (19.812 meters) long from the base to the adapter section, and the tank section is 10 feet (3.038 meters) in diameter. The complete Atlas-Agena D orbital launch vehicle is 93 feet (28.436 meters) tall. When ready for launch it weighed approximately 260,000 pounds (117,934 kilograms).

The Atlas’ three engines were built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. Two Rocketdyne LR89-NA-5 engines and one LR105-NA-5 produced 341,140 pounds (1,517.466 kilonewtons) of thrust. The rocket was fueled by a highly-refined kerosene, RP-1, with liquid oxygen as the oxidizer.

The second stage was an Agena D, built by Lockheed Missiles and Space Systems, Sunnyvale, California. The Agena D was 20 feet, 6 inches (6.299 meters) long and had a maximum diameter of 5 feet, 0 inches (1.524 meters). The single engine was a Bell Aerosystems Company LR81-BA-11, with 16,000 pounds of thrust (71.1 kilonewtons). It was also liquid fueled, but used a hypergolic mixture of nitric acid and UDMH. This engine was capable of being restarted in orbit.

Mariner 4 made its closest approach to Mars, 9,846 kilometers (6,118 miles) on 15 July 1965. The final contact with the probe occurred on 21 December 1967.

The first photographic image of Mars was captured by Mariner 4’s imaging system on 15 July 1965 and was transmitted to Earth the following day. (NASA/JPL-Caltech)
Digital image of the surface of Mars, 14 July 1965. (NASA)

© 2019, Bryan R. Swopes

11 October 1968, 15:02:45 UTC, T plus 000:00:00.36

Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34 at the Kennedy Space Center, 15:02:45 UTC, 11 October 1968. (NASA)
Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34, Cape Kennedy Air Force Station, 15:02:45 UTC, 11 October 1968. (NASA)

11 October 1968: at 15:02:45 UTC, Apollo 7, the first manned Apollo spacecraft, was launched aboard a Saturn IB rocket from Launch Complex 34, Cape Kennedy Air Force Station, Cape Kennedy, Florida.

The flight crew were Captain Walter M. (“Wally”) Schirra, United States Navy, the mission commander, on his third space flight; Major Donn F. Eisele, U.S. Air Force, the Command Module Pilot, on his first space flight; and Major R. Walter Cunningham, U.S. Marine Corps, Lunar Module Pilot, also on his first space flight.

The flight crew of Apollo 7, left to right: Donn Eisele, USAF, Capain Walter M. ("Wally") Schirra, USN, and Major R. Walter Cunningham, USMC. (NASA)
The flight crew of Apollo 7, left to right: Major Donn F. Eisele, USAF, Captain Walter M. (“Wally”) Schirra, USN, and Major R. Walter Cunningham, USMCR. (NASA) 

The mission was designed to test the Apollo spacecraft and its systems. A primary goal was the test of the Service Propulsion System (SPS), which included a restartable Aerojet AJ10-137 rocket engine which would place an Apollo Command and Service Module into and out of lunar orbit on upcoming missions.

The SPS engine was built by Aerojet General Corporation, Azusa, California. It burned a hypergolic fuel combination of Aerozine 50 (a variant of hydrazine) and nitrogen tetraoxide, producing 20,500 pounds of thrust. It was designed for a 750 second duration, or 50 restarts during a flight. This engine was fired eight times and operated perfectly.

The duration of the flight of Apollo 7 was 10 days, 20 hours, 9 minutes, 3 seconds, during which it orbited the Earth 163 times. The spacecraft splashed down 22 October 1968, approximately 230 miles (370 kilometers) south south west of Bermuda in the Atlantic Ocean, 8 miles (13 kilometers) from the recovery ship, the aircraft carrier USS Essex (CVS-9).

The Apollo command module was a conical space capsule designed and built by North American Aviation to carry a crew of three on space missions of two weeks or longer. Apollo 7 (CSM-101) was the first Block II capsule, which had been extensively redesigned following the Apollo 1 fire which had resulted in the deaths of three astronauts. The Block II capsule was 10 feet, 7 inches (3.226 meters) tall and 12 feet, 10 inches (3.912 meters) in diameter. It weighed 12,250 pounds (5,557 kilograms). There was 218 cubic feet (6.17 cubic meters) of livable space inside.

Apollo 7/Saturn IB AS-205.at Launch Complex 34.(NASA)

The Saturn IB consisted of an S-IB first stage and an S-IVB second stage. The S-IB was built by Chrysler. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks containing the RP-1 fuel surrounded a Jupiter rocket tank containing the liquid oxygen. Total thrust of the S-IB stage was 1,600,000 pounds and it carried sufficient propellant for 150 seconds of burn. This would lift the vehicle to an altitude of 37 nautical miles (69 kilometers).

The Douglas-built S-IVB stage was powered by one Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The single engine produced 200,000 pounds of thrust and had enough fuel for 480 seconds of burn.

The Saturn IB rocket stood 141 feet, 6 inches (43.13 meters) without payload. It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 at 35,000 feet (10,668 meters). (NASA)
Staging. Apollo 7 Saturn IB first stage separation. (NASA)

© 2019, Bryan R. Swopes

18 July 1966, 22:20:26.648 UTC, T minus Zero

Gemini 10 launches from LC-19, Cape Kennedy Air Force Station, at 22:20:26 UTC, 18 July 1966. (NASA)

18 July 1966: At 22:20:26.648 UTC, Gemini 10 launched from Launch Complex 19 at the Cape Kennedy Air Force Station. The two astronauts aboard were John W. Young, on his second space flight, and Michael Collins. The launch vehicle was a liquid-fueled Martin SLV-4 Titan II, serial number 62-12565.

John Watts Young, Command Pilot, and Michael Collins, Pilot,  the flight crew of Gemini 10. (NASA)

The objective of the Gemini 10 mission was to demonstrate orbital rendezvous and docking with another spacecraft, as well as “EVA”—Extra Vehicular Activity. The Gemini capsule docked with an Agena target vehicle which had been launched one hour before. The flight crew opened the hatches and Michael Collins stood in the opening, taking photographs.

Agena Target Docking Vehicle 5005. (Michael Collins/NASA)

After undocking, the Gemini located and docked with another Agena from the earlier Gemini 8 flight. Collins this time left the capsule and retrieved some experiments from the dormant target vehicle before returning to Gemini 10.

After nearly three days in space, they landed in the Pacific Ocean, 3.86 miles (6.21 kilometers) from the primary recovery ship, USS Guadalcanal (LPH-7). This set a Fédération Aéronautique Internationale (FAI) Absolute World Record for Precision Landing.¹  The total duration of the flight was 2 days, 22 hours, 46 minutes, 39 seconds.

Gemini 10 Command Pilot John Watts Young is hoisted aboard a recovery helicopter, 21 July 1966. (NASA S66-42773)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship. At launch, Gemini 10 weighed 8,295 pounds (3763 kilograms).

Gemini Spacecraft. (NASA)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter.

The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust.² It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust.³

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.⁴

Gemini/Titan GLV-4. (NASA)
This well-used Omega Speedmaster chronograph was worn by John Young during the Gemini 10 mission. (Smithsonian Institution)

Both astronauts went on to the Apollo program, with Collins serving as Command Module Pilot for the Apollo 11 lunar landing mission, and John Young as CMP for Apollo 10. Young commanded Apollo 16, and the first space shuttle flight, Columbia STS-1 and Columbia STS-9. He was scheduled to command STS-61J to deploy the Hubble Space Telescope, but that flight  was put off by the Challenger disaster. Michael Collins went on to head the National Air and Space Museum and LTV Aerospace.

Gemini 10 is at the Kansas Cosmosphere and Space Center, awaiting restoration.

¹ FAI Record File Number 10285

² The Gemini 10 first stage engine produced a flight average of 462,750 pounds of thrust (2,058.42 kilonewtons).

³ The Gemini 10 second stage engine produced a flight average of 99,168 pounds of thrust (441.12 kilonewtons).

⁴ Gemini 10/Titan II GLV combination weighed 344,856 pounds (156,424 kilograms) at 1st Stage ignition.

© 2018, Bryan R. Swopes