Tag Archives: Rocketdyne J-2

7 December 1972 05:33:00 UTC, T + 00:00:00.63

Apollo 17 (AS-512) on the pad at Launch Complex 39A, 21 November 1972. (NASA)
Apollo 17 (AS-512) on the pad at Launch Complex 39A, 21 November 1972. (NASA)

7 December 1972: At 05:33:00 UTC, Apollo 17, the last manned mission to The Moon in the 20th century, lifted off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida. The destination was the Taurus-Littrow Valley.

Gene Cernan, seated, with Harrison Schmitt and Ronald Evans. (NASA)
Gene Cernan, seated, with Harrison Schmitt and Ronald Evans. (NASA)

The Mission Commander, on his third space flight, was Eugene A. Cernan. The Command Module Pilot was Ronald A. Evans, on his first space flight, and the Lunar Module Pilot was Harrison H. Schmitt, also on his first space flight.

Schmitt was placed in the crew because he was a professional geologist. (He replaced Joe Engle, an experienced test pilot who had made sixteen flights in the X-15 hypersonic research rocketplane. Three of those flights were higher than the 50-mile altitude, qualifying Engle for U.S. Air Force astronaut wings.)

The launch of Apollo 17 was delayed for 2 hours, 40 minutes due to a minor mechanical malfunction. When it did liftoff, at 12:33 a.m. EST, the launch was witnessed by more than 500,000 people.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet (110.642 meters) tall. The first and second stages were 33 feet (10.058 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms). It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,850.97 kilonewtons). These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (717.28 kilonewtons).

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

Apollo 17 launched 3 years, 4 months, 20 days, 16 hours, 1 minute, 0 seconds after Apollo 11, the first manned flight to The Moon.

Apollo 17 (AS-512) lifts off from Launch Complex 39A at 05:33:00 UTC, 7 December 1972. (NASA)
Apollo 17 (AS-512) lifts off from Launch Complex 39A at 05:33:00 UTC, 7 December 1972. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 November 1973

Skylab 4 (SA208) lift off from Launch Complex 39B, 14:01:23 UTC, 16 November 1973. (NASA)
Skylab 4 (SA-208) lift off from Launch Complex 39B, 14:01:23 UTC, 16 November 1973. (NASA)

16 November 1973: Skylab 4 lifted off from Launch Complex 39B, Kennedy Space Center, at 14:01:23 UTC. Aboard the Apollo Command and Service Module were NASA astronauts Lieutenant Colonel Gerald Paul Carr, U.S. Marine Corps, Mission Commander;  Lieutenant Colonel William Reid Pogue, U.S. Air Force; and Edward George Gibson, Ph.D. This would be the only space mission for each of them. They would spend 84 days working aboard Skylab.

Skylab 4 crew, left to right, Carr, Gibson and Pogue. (NASA)
Skylab 4 crew, left to right, Gerald Carr, Edward Gibson and William Pogue. (NASA)

The launch vehicle was a Saturn IB, SA-208. This rocket had previously stood by as a rescue vehicle during the Skylab 3 mission. The Saturn IB consisted of an S-IB first stage and an S-IVB second stage.

Saturn IB Launch Vehicle. (NASA)
Mission SL-2 Saturn IB Launch Vehicle. (NASA)

The S-IB was built by Chrysler Corporation Space Division at the Michoud Assembly Facility near New Orleans, Louisiana. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks, with 4 containing the RP-1 fuel, and 4 filled with liquid oxygen, surrounded a Jupiter rocket fuel tank containing liquid oxygen. Total thrust of the S-IB stage was 1,666,460 pounds (7,417.783 kilonewtons) and it carried sufficient propellant for a maximum 4 minutes, 22.57 seconds of burn. First stage separation was planned for n altitude of 193,605 feet, with the vehicle accelerating through 7,591.20 feet per second (2,313.80 meters per second).

The McDonnell Douglas Astronautics Co. S-IVB stage was built at Huntington Beach, California. It was powered by one Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The J-2 produced 229,714 pounds of thrust (1,021.819 kilonewtons), at high thrust, and 198,047 pounds (880.957 kilonewtons) at low thrust). The second stage carried enough fuel for 7 minutes, 49.50 seconds burn at high thrust. Orbital insertion would be occur 9 minutes, 51.9 seconds after launch, at an altitude of 98.5 miles (158.5 kilometers) with a velocity of 25,705.77 feet per second (7,835.12 meters per second).

The Skylab-configuration Saturn IB rocket was 223 feet, 5.9 inches (68.119 meters) tall. It had a maximum diameter of 22.8 feet (6.949 meters), and the span across the first stage guide fins was 40.7 feet (12.405 meters). Its empty weight was 159,000 pounds (72,122 kilograms) and at liftoff, it weighed 1,296,000 pounds (587,856 kilograms). It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

Skylab in Earth orbit, as seen by the departing Skylab 4 mission crew, 8 February 1974. (NASA)
Skylab in Earth orbit, as seen by the departing Skylab 4 mission crew, 8 February 1974. (NASA)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 November 1969, 19:15:13 UTC, T plus 2:53:13.94

This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)
This 1966 illustration depicts the J-2 engine of the S-IVB third stage firing to send the Apollo spacecraft to the Moon. (NASA)

14 November 1969: At 19:09:22 UTC, the Apollo 12 S-IVB third stage engine reignited for the Trans Lunar Injection maneuver.

One of the necessary features of the Rocketdyne J-2 engine was its ability to restart a second time. The third stage was first used to place the Apollo 12 spacecraft into Earth orbit and was then shutdown. When the mission was ready to proceed toward the Moon, the J-2 was re-started. Using liquid hydrogen and liquid oxygen for propellant, Apollo 12’s S-IVB burned for 5 minutes, 41 seconds. The engine was shut down at 19:15:03 UTC. Trans Lunar Injection was at T plus 2 hours, 53 minutes, 13.94 seconds.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 November 1969, 16:24:42.4 UTC, T plus 2:42.4

Saturn V S-IC first stage separation. (NASA)
Saturn V S-IC first stage separation. (NASA)

14 November 1969, 16:24:43.4 UTC: The Apollo 12 Saturn 5 passes 42 miles (67 kilometers) altitude at 5,145 miles per hour (8,280 kilometers per hour). The rocket reaches it maximum inertial acceleration of 3.91 g.

At T plus 2 minutes, 42.4 seconds, Apollo 12’s S-IC first stage separates. 0.8 seconds later, the S-II stage Rocketdyne J-2 engines ignited.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

14 November 1969, 16:22:00.68 UTC, T plus 000.00.00.68

The crew of Apollo 12: Charles “Pete” Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean. (NASA)
The crew of Apollo 12: Charles “Pete” Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean. (NASA)

14 November 1969: At 16:22:00.68 UTC (11:22:00 a.m., Eastern Standard Time), the Apollo 12 Saturn V (AS-507) lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida. This was the second manned space flight to the Moon. The flight crew were Commander Charles “Pete” Conrad, Jr., United States Navy, Mission Commander; Commander Richard F. Gordon, Jr., U.S. Navy, Command Module Pilot; Commander Alan L. Bean, U.S. Navy, Lunar Module Pilot. Their destination was Oceanus Procellarum.

Apollo 12 Saturn V (AS-507) lifts off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida, at 16:22:00 UTC, 14 November 1969. (NASA)
Apollo 12 Saturn V (AS-507) lifts off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida, at 16:22:00 UTC, 14 November 1969. (NASA)

Two lightning strikes 36.5 seconds after liftoff caused the spacecraft’s automatic systems to shut down three fuel cells, leaving Apollo 12 operating on battery power. A third electrical disturbance at T + 52 seconds caused the “8 ball” attitude indicator in the cockpit to fail. A quick thinking ground controller, the “EECOM,” called “Try SCE to Aux.” Alan Bean recalled this from a simulation a year earlier, found the correct switch and restored the failed systems.

The lightning discharge was caused by the Apollo 12/Saturn V vehicle accelerating through rain at approximately 6,300 feet (1,950 meters). There were no thunderstorms in the area. Post-flight analysis indicates that it is probable that the lightning discharge started at the top of the Apollo 12/Saturn V vehicle. Energy of the discharge was estimated at 10⁴–10⁸ joules.

Lightning discharge near Launch Complex 39A (NASA)

Soon after passing Mach 1, the Saturn V rocket encountered the maximum dynamic pressure (“Max Q”) of 682.95 pounds per square foot (0.327 Bar) as it accelerated through the atmosphere.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, .2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed approximately 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,851 kilonewtons).² These engines were ignited 6.50 seconds prior to Range Zero and the outer four burned for 161.74 seconds. The center engine was shut down after 135.24 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (5,165.5 kilonewtons).³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

¹ The AS-507 total vehicle mass at First Stage Ignition (T – 6.50 seconds) was 6,137,868  pounds (2,784,090 kilograms).

² Post-flight analysis gave the total thrust of AS-507’s S-IC stage as 7,594,000 pounds of thrust (33,780 kilonewtons).

³ Post-flight analysis gave the total thrust of AS-507’s S-II stage as 1,161,534 pounds of thrust (5,166.8 kilonewtons).

⁴ Post-flight analysis gave the total thrust of AS-507’s S-IVB stage as 206,956 pounds of thrust (920.6 kilonewtons) during the first burn; 207,688 pounds (923.8 kilonewtons) during the second burn.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather