Tag Archives: Kelly Johnson

17 April 1956

The first Lockheed F-104A Starfighter, 55-2956, i stowed out of its hangar at Air Force Plant 42, Palmdale, California, 17 April 1956. (Lockheed)
The first Lockheed F-104A Starfighter, 55-2956, is towed out of its hangar at Air Force Plant 42, Palmdale, California, 17 April 1956. (Lockheed Martin)

17 April 1956: Lockheed Aircraft Corporation rolled out the very first production F-104A Starfighter, 55-2956, at Air Force Plant 42, Palmdale, California. This airplane, one of the original seventeen pre-production YF-104As, incorporated many improvements over the XF-104 prototype, the most visible being a longer fuselage.

Once the configuration was finalized, 55-2956 was the first YF-104A converted to the F-104A production standard. In this photograph, the F-104’s secret engine intakes are covered by false fairings.

Lockheed F-104A Starfighter 55-2956 rollout at Palmdale, 17 April 1956. (Lockheed)
Lockheed F-104A Starfighter 55-2956 rollout at Palmdale, 17 April 1956. (Lockheed Martin)

The Lockheed F-104A Starfighter was a single-place, single-engine supersonic interceptor. It was designed by a team lead by the legendary Clarence L. “Kelly” Johnson. The F-104A was 54 feet, 8 inches (16.662 meters) long with a wingspan of 21 feet, 9 inches (6.629 meters) and overall height of 13 feet, 5 inches (4.089 meters). It had an empty weight of 13,184 pounds (5,980.2 kilograms), combat weight of 17,988 pounds (8,159.2 kilograms), gross weight of 22,614 pounds (10,257.5 kilograms) and a maximum takeoff weight of 25,840 pounds (11,720.8 kilograms). Internal fuel capacity was 897 gallons (3,395.5 liters).

The F-104A was powered by a single General Electric J79-GE-3A engine, a single-spool axial-flow afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79-GE-3A is rated at 9,600 pounds of thrust (42.70 kilonewtons), and 15,000 pounds (66.72 kilonewtons) with afterburner. The engine is 17 feet, 3.5 inches (5.271 meters) long, 3 feet, 2.3 inches (0.973 meters) in diameter, and weighs 3,325 pounds (1,508 kilograms).

The F-104A had a maximum speed of 1,037 miles per hour (1,669 kilometers per hour) at 50,000 feet (15,240 meters). Its stall speed was 198 miles per hour (319 kilometers per hour). The Starfighter’s initial rate of climb was 60,395 feet per minute (306.8 meters per second) and its service ceiling was 64,795 feet (19,750 meters).

Lockheed F-104A-5-LO Starfighter 56-737 launches two AIM-9B Sidewinder infrared-homing air-to-air missiles. (U.S. Air Force)

Armament was one General Electric M61 Vulcan six-barreled revolving cannon with 725 rounds of 20 mm ammunition. An AIM-9B Sidewinder heat-seeking air-to-air missile could be carried on each wing tip, or a jettisonable fuel tank with a capacity of 141.5 gallons (535.6 liters).

Lockheed built 153 of the F-104A Starfighter initial production version. A total of 2,578 F-104s of all variants were produced by Lockheed and its licensees, Canadair, Fiat, Fokker, MBB, Messerschmitt,  Mitsubishi and SABCA. By 1969, the F-104A had been retired from service. The last Starfighter, an Aeritalia-built F-104S ASA/M of the  Aeronautica Militare Italiana, was retired in October 2004.

Lockheed JF-104A Starfighter 55-2956 at NOTS China Lake. (U.S. Navy)

This Starfighter, 55-2956, was converted to a JF-104A with specialized instrumentation. It was transferred to the U.S. Navy to test AIM-9 Sidewinder missiles at Naval Ordnance Test Station (NOTS) China Lake, approximately 55 miles (88 kilometers) north-northeast of Edwards Air Force Base in the high desert of Southern California. 55-2956 was damaged beyond repair when it lost power on takeoff and ran off the runway at Armitage Field, 15 June 1959.

While on loan to teh U.S. Navy for testing the Sidewinder missile, Lockheed F-104A Starfighter 55-2956 crashed on takeoff at NAS China Lake. Damaged beyond economic repair, the Starfighter was written off. (U.S. Navy)
While on loan to the U.S. Navy for testing the AIM-9 Sidewinder missile, Lockheed JF-104A Starfighter 55-2956, with Commander Herk Camp in the cockpit, crashed on takeoff at Armitage Field, NOTS China Lake. (U.S. Navy)

©2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

Clarence Leonard (“Kelly”) Johnson (27 February 1910–21 December 1990)

Clarence Leonard "Kelly" Johnson. (guggenheimedal.org)
Clarence Leonard “Kelly” Johnson. (guggenheimedal.org)

Clarence Leonard (“Kelly”) Johnson was born at Ishpeming, Michigan, United States of America, 27 February 1910. He was the third of five children of Peter Johnson, a stone mason, and Kjrstie Anderson Johnson. His parents were immigrants from Sweden.

C.L. Johnson, 1932 (Michiganensian)

Kelly Johnson attended Flint Central High School, graduating in 1928. After studying at a community college, Johnson transferred to the University of Michigan at Ann Arbor. He graduated in 1932 with a Bachelor of Science degree in Aeronautical Engineering (B.S.E. AeroE.). He won the Frank Sheehan Scholarship in Aeronautics, which enabled him to continue at the University to earn a Master of Science degree in Aeronautical Engineering (M.S.E.) in 1933.

Kelly Johnson started working as a tool designer for the Lockheed Aircraft Company in Burbank, California, in 1933. After transferring to the engineering department, he was assigned to the company’s Model 10 Electra project. Johnson identified a stability problem with the airplane’s design, and he was sent back to the University of Michigan to conduct a wind tunnel study which resulted in his proposal of the twin vertical tail configuration which was a characteristic of many Lockheed airplanes that followed. Johnson also served as a flight test engineer for the airplane.

A genius of aeronautical engineering and design, he was responsible for all of Lockheed’s most famous aircraft: the Lockheed Hudson and Neptune medium bombers, the P-38 Lightning twin-engine fighter, the P-80 Shooting Star, America’s first full-production jet fighter. He designed the beautiful Constellation airliner. The list is seemingly endless: The F-94 Starfire, F-104 Starfighter, U-2, A-12 Oxcart and the SR-71 Blackbird.

Clarence L. “Kelly” Johnson conducted wind tunnel testing of the Lockheed Model 10 at the University of Michigan. (Lockheed Martin)
The prototype Lockheed Model 10 Electra NX233Y during flight testing. (Lockheed Martin)
Lockheed Model 12 Electra Jr. (SDASM Catalog #: 01_00091568)
Lockheed YP-38 Lightning (U.S. Air Force)
Lockheed Model 14-N2 Super Electra Special, c/1419, NX18973. (San Diego Air and Space Museum Archive)
Lockheed Model 414 Hudson (A-29A-LO) in U.S. Army Air Corps markings. (U.S. Air Force)
Prototype Lockheed Model 18 Lodestar, NX17385. (Lockheed Martin)
Lockheed Ventura (IWM ATP 12110C)
Clarence L. “Kelly” Johnson (left) and Chief Engineering Test Pilot Milo G. Burcham, with the XC-69. (Lockheed Martin)
Lockheed XC-69 prototype, NX25600, landing at Burbank Airport. (Lockheed Martin)
The Lockheed XP-80 prototype, 44-83020, at Muroc AAF, 8 January 1944. (Lockheed Martin)
Clarence L. “Kelly” Johnson with a scale model of a Lockheed P-80A-1-LO Shooting Star. (Lockheed Martin)
Lockheed XP2V-1 Neptune prototype, Bu. No. 48237, 1945. (Lockheed Martin)
Lockheed TP-80C-1-LO (T-33A) prototype, 48-356, with P-80C-1-LO Shooting Star 47-173, at Van Nuys Airport, California. (Lockheed Martin)
Lockheed YF-94 prototype, 48-356. (See TP-80C prototype, above.) (U.S. Air Force)
Lockheed XF-104 prototype, 53-7786, photographed 5 May 1954. (Lockheed Martin)
Kelly Johnson seated in the cockpit of a prototype Lockheed XF-104 Starfighter. (Lockheed Martin)
Lockheed U-2, “Article 001” (Lockheed Martin)
Lockheed L-1049 Super Constellation prototype, NX6700, ex-L-049 NX25600. (Lockheed Martin)
The second Lockheed L-1649A Starliner, delivered to Trans World Airlnes in September 1957. (Lockheed Martin)
Lockheed EC-121T Warning Star. (U.S. Air Force)
Lockheed Model L-349 JetStar.
Lockheed A-12 60-6924 (Lockheed Martin)
Lockheed SR-71A 69-7953. (U.S. Air Force)
Clarence L. (“Kelly”) Johnson, Director of Lockheed’s Advanced Development Projects (“the Skunk Works”) with the first YF-12A interceptor, 60-6934. (Lockheed Martin)

Kelly Johnson was married three times. He married Miss Althea Louise Young, who worked in Lockheed’s accounting department, in 1937. She died of cancer in December 1969. He then married Miss Maryellen Elberta Meade, his secretary, at Solvang, California, 20 May 1971. She died 13 October 1980 of complications of diabetes. He married his third wife, Mrs. William M. Horrigan (née Nancy M. Powers), a widow, and MaryEllen’s best friend, 21 November 1980. Johnson had no children.

Kelly Johnson retired from Lockheed in 1975 as a senior vice president. He remained on the board of directors until 1980.

Clarence Leonard Johnson died 21 December 1990 at St. Joseph’s Medical Center, Burbank, California, after a long period of hospitalization. He was buried at the Forest Lawn Memorial Park in the Hollywood Hills, Los Angeles, California.

© 2018, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

17 February 1956

Lockheed YF-104A, 55-2955. (AFFTC History Office)

17 February 1956: Test pilot Herman Richard (“Fish”) Salmon made the first flight of the Lockheed YF-104A service test prototype, Air Force serial number 55-2955 (Lockheed serial number 183-1001). This airplane, the first of seventeen pre-production YF-104As, incorporated many improvements over the XF-104 prototype, the most visible being a longer fuselage.

Lockheed test pilots Anthony W. (“Tony”) LeVier, on the left, and Herman R. (“Fish”) Salmon, circa 1957. An F-104 Starfighter is in the background. (Jet Pilot Overseas)

On 28 February 1956, YF-104A 55-2955 became the first aircraft to reach Mach 2 in level flight.

The YF-104A was later converted to the production standard and redesignated F-104A.

Lockheed XF-104. (Lockheed-Martin)
Lockheed YF-104A Starfighter 55-2955 (183-1001), right profile. Note the increased length of the fuselage and revised air intakes, compared to the XF-104, above. Also, the XF-104’s nose gear retracts backward, while the YF-104A’s gear swings forward. (U.S. Air Force)

The Lockheed F-104A Starfighter is a single-place, single-engine, Mach 2 interceptor. It was designed by a team lead by the legendary Clarence L. “Kelly” Johnson. The F-104A is 54.77 feet (16.694 meters) long with a wingspan of 21.94 feet (6.687 meters) and overall height of 13.49 feet (4.112 meters). The total wing area is just 196.1 square feet (18.2 square meters). At 25% chord, the wings are swept aft 18° 6′. They have 0° angle of incidence and no twist. The airplane has a very pronounced -10° anhedral. An all-flying stabilator is placed at the top of the airplane’s vertical fin, creating a “T-tail” configuration.

The F-104A had an empty weight of 13,184 pounds (5,980.2 kilograms). The airplane’s gross weight varied from 19,600 pounds to 25,300 pounds, depending on the load of missiles and/or external fuel tanks.

Internal fuel capacity was 896 gallons (3,392 liters). With Sidewinder missiles, the F-104A could carry two external fuel tanks on underwing pylons, for an additional 400 gallons (1,514 liters). If no missiles were carried, two more tanks could be attached to the wing tips, adding another 330 gallons (1,249 liters) of fuel.

Lockheed F-104A Starfighter three-view illustration with dimensions. (Lockheed Martin)

The F-104A was powered by a single General Electric J79-GE-3B, -11A or -19 engine. The J79 is a single-spool, axial-flow, afterburning turbojet, which used a 17-stage compressor and 3-stage turbine. The J79GE-3B has a continuous power rating of 8,950 pounds of thrust (39.81 kilonewtons) at 7,460 r.p.m. Its Military Power rating is 9,600 pounds (42.70 kilonewtons) (30-minute limit), and 15,000 pounds (66.72 kilonewtons) with afterburner (5-minute limit). The engine is 17 feet, 3.2 inches (5.263 meters) long, 2 feet, 8.6 inches (0.828 meters) in diameter, and weighs 3,225 pounds (1,463 kilograms).

The F-104A had a maximum speed of  1,150 knots (1,323 miles per hour/2,130 kilometers per hour) at 35,000 feet (10,668 meters). The Starfighter’s initial rate of climb was 60,395 feet per minute (306.8 meters per second) and its service ceiling was 59,600 feet (18,166 meters).

The Lockheed F-104 was armed with an electrically-powered General Electric T-171E-3 (later designated M61) Vulcan 6-barrel rotary cannon, or “Gatling Gun.” The technician has a belt of linked 20 mm cannon shells. (SDASM)

Armament was one General Electric M61 Vulcan six-barreled revolving cannon with 725 rounds of 20 mm ammunition, firing at a rate of 4,000 rounds per minute. An AIM-9B Sidewinder infrared-homing air-to-air missile could be carried on each wing tip.

Lockheed YF-104A 55-2955 with landing gear retracting. (Lockheed Martin via International F-104 Society)

Lockheed built 153 of the F-104A Starfighter initial production version. A total of 2,578 F-104s of all variants were produced by Lockheed and its licensees, Canadair, Fiat, Fokker, MBB, Messerschmitt,  Mitsubishi and SABCA. By 1969, the F-104A had been retired from service. The last Starfighter, an Aeritalia-built F-104S ASA/M of the  Aeronautica Militare Italiana, was retired in October 2004.

While conducting flame-out tests in 55-2955, 25 April 1957, Lockheed  engineering test pilot John A. (“Jack”) Simpson, Jr., made a hard landing  at Air Force Plant 42, Palmdale, California, about 22 miles (35 kilometers) southwest of Edwards Air Force Base. After a bounce, the landing gear collapsed, and the Starfighter skidded off the runway. 55-2955, nick-named Apple Knocker, was damaged beyond repair. “Suitcase” Simpson was not hurt.

Lockheed F-104A 55-2955 was damaged beyond repair, 25 April 1967. (U.S. Air Force photograph via International F-104 Society))

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

3 February 1946

Transcontinental and Western Airlines Lockheed L-049 Constellation. (TWA)
A Transcontinental and Western Airlines Lockheed L-049 Constellation. (TWA)

3 February 1946: Transcontinental and Western Airlines (“The Trans World Airline”) inaugurated non-stop passenger service from Los Angeles to New York with it’s Lockheed L-049A Constellation, Navajo Skychief, NC86503.

Captain William John (“Jack”) Frye, president of the airline, and his co-pilot, Captain Lee Flanagin, T&WA’s Western Region Operations Manager, were at the controls with Captain Paul S. Frederickson and Captain A.O. Lundin aboard as relief pilots. Flight Engineers Paul Henry and E.T. Greene completed the flight crew. In the passenger cabin were flight attendants Dorraine Strole and Rita P. Crooks. The 44 passengers were primarily news reporters.

Flight crew of Transcontinental and Western Airlines’ Lockheed L-049 Constellation, Navajo Chieftain, at LaGuardia Airport, New York, 3 February 1946. Front row, left to right, Paul Henry, Flight Engineer; Captain William John (“Jack”) Frye, Pilot; E.T. Greene, Flight Engineer. Second row, Captain Paul S. Frederickson, Relief Pilot; and First Officer Lee Flanigin, Co-Pilot. Top, Stewardess Dorraine Strole, and Stewardess Rita P. Crooks (Unattributed. This internet image appears to have been cropped from a larger photograph at https://www.sedonalegendhelenfrye.com/1946.html)

Navajo Skychief departed Lockheed Air Terminal, Burbank, California, at 12:59:12 a.m., Pacific Standard Time, and flew across the North American continet at an altitude of 15,000–17,000 feet (4,572–5,182 meters), taking advantage of tailwinds throughout the flight. The Constellation crossed over LaGuardia Airport, New York, at 1,500 feet (457.2 meters) at 11:27 a.m., Eastern Standard Time.

Route of Navajo Skychief, 3 February 1946. (Daily News, Vol. 27, No. 192, Monday, 4 February 1946, Page 3, Columns 7 and 8)

The 2,474-mile (3,954.2 kilometer) Great Circle flight took 7 hours, 27 minutes, 48 seconds, averaging 329 miles per hour (529.5 kilometers per hour), setting a National Aeronautic Association transcontinental speed record for transport aircraft.

With 52 persons aboard, this was the largest number carried in commercial passenger service up to that time.

TWA Lockheed L-049 Constellation NC86511, Star of Paris, sister ship of Navajo Skychief. (Sedona legend Helen Frye)

The four Duplex-Cyclone engines burned 450 gallons (1,703.4 liters) of gasoline per hour. On landing, 610 gallons (2,309.1 liters) of fuel remained.

A TWA stewardess. (LIFE Magazine)
A TWA stewardess. (LIFE Magazine)

Navajo Skychief (serial number 2024), a Lockheed Model L-049-46 Constellation, had been built at Lockheed Aircraft Corporation’s Burbank, California, plant and delivered to Transcontinental and Western on 20 December 1945. The airliner remained in service with TWA until March 1962. During that time it was also named Star of the Nile and Star of California. The Constellation was scrapped in May 1964.

The Lockheed Constellation first flew in 1942, and was produced for the U.S. Army Air Corps as the C-69. With the end of World War II, commercial airlines needed new airliners for the post-war boom. The Constellation had transoceanic range and a pressurized cabin for passenger comfort.

Transcontinental and Western Airlines’ Lockheed L-049A Constellation, NC 86503, Navajo Skychief. (Unattributed)

The Lockheed L-049 Constellation was operated by a flight crew of four and could carry up to 81 passengers. The airplane was 95 feet, 1 316 inches (28.986 meters) long with a wingspan of 123 feet, 0 inches (37.490 meters), and overall height of 23 feet, 7⅞ inches (7.210 meters). It had an empty weight of 49,392 pounds (22,403.8 kilograms) and maximum takeoff weight of 86,250 pounds (39,122.3 kilograms).

Navajo Skychief, Transcontinental and Western Airlines’ Lockheed L-049A Constellation, NC 86503. (Ed Coates Collection)

The L-049 was powered by four air-cooled, supercharged and fuel-injected, 3,347.662-cubic-inch-displacement (54.858 liter) Wright Aeronautical Division Cyclone 18 ¹ 745C18BA3 two-row 18-cylinder radial engines with a compression ratio of 6.5:1. The -BA3 was rated at 2,000 horsepower at 2,400 r.p.m., or 2,200 horsepower at 2,800 r.p.m., for takeoff, (five minute limit). The engines drove 15 foot, 2 inch (4.623 meter) diameter, three-bladed Hamilton Standard Hydromatic constant-speed propellers through a 0.4375:1 gear reduction. The 745C18BA3 was 6 feet, 4.13 inches (1.934 meters) long, 4 feet, 7.78 inches (1.417 meters) in diameter and weighed 2,842 pounds (1,289.11 kilograms).

The L-049 had a cruise speed of 313 miles per hour (503.72 kilometers per hour) and a range of 3,995 miles (6,429.3 kilometers). Its service ceiling was 25,300 feet (7,711 meters).

22 C-69s and 856 Constellations of all types were built. Designed by the famous Kelly Johnson, the Lockheed Constellation was in production from 1943–1958 in both civilian airliner and military transport versions. It is the classic propeller-driven transcontinental and transoceanic airliner.

TWA Lockheed Constellation.
TWA Lockheed Constellation.

Jack Frye had founded the Aero Corporation of California, which would later become Transcontinental and Western, on 3 February 1926. He died at Tucson, Arizona, on 3 February 1959 at the age of 55 years.

¹ The Cyclone 18 series was also known as the Duplex Cyclone.

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather

27 January 1939

Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457 at March Field, Riverside County, California, January 1939. (San Diego Air and Space Museum Archive)

27 January 1939: First Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, made the first flight of the prototype Lockheed XP-38 Lightning, serial number 37-457, at March Field, Riverside County, California.

This was a short flight. Immediately after takeoff, Kelsey felt severe vibrations in the airframe. Three of four flap support rods had failed, leaving the flaps unusable.

1st Lieutenant Benjamin Scovill Kelsey, Air Corps, United States Army, 1937.

Returning to March Field, Kelsey landed at a very high speed with a 18° nose up angle. The tail dragged on the runway. Damage was minor and the problem was quickly solved.

Designed by an engineering team led by Hall L. Hibbard, which included the legendary Clarence L. “Kelly” Johnson, the XP-38 was a single-place, twin-engine fighter designed for very high speed and long range. It was an unusual configuration with the cockpit and armament in a center nacelle, with two longitudinal booms containing the engines and propellers, turbochargers, radiators and coolers. The Lightning was equipped with tricycle landing gear. The nose strut retracted into the center nacelle and the two main gear struts retracted into bays in the booms. To reduce drag, the sheet metal used butt joints with flush rivets.

The prototype had been built built at Lockheed’s factory in Burbank, California. On the night of 31 December 1938/1 January 1939, it was transported to March Field aboard a convoy of three trucks. Once there, the components were assembled by Lockheed technicians working under tight security.

Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 Lightning 37-457. (San Diego Air and Space Museum Archive)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Left profile, Lockheed XP-38 Lightning 37-457. (U.S. Air Force)
Lockheed XP-38 Lightning 37-457

The XP-38 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 52 feet (15.850 meters) and overall height of 12 feet, 10 inches (3.952 meters). Its empty weight was 11,507 pounds (5,219.5 kilograms). The gross weight was 13,904 pounds (6,306.75 kilograms) and maximum takeoff weight was 15,416 pounds (6,992.6 kilograms).

The Lightning was the first production airplane to use the Harold Caminez-designed, liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710 single overhead cam 60° V-12 engines. When installed on the P-38, these engines rotated in opposite directions. The XP-38 used a pair of experimental C-series Allisons, with the port V-1710-C8 (V-1710-11) engine being a normal right-hand tractor configuration, while the starboard engine, the V-1710-C9 (V-1710-15), was a left-hand tractor. Through a 2:1 gear reduction, these engines drove the 11-foot (3.353 meters) diameter, three-bladed Curtiss Electric variable-pitch propellers inward to counteract the torque effect of the engines and propellers. (Viewed from the front of the airplane, the XP-38’s starboard propeller turned clockwise, the port propeller turned counter-clockwise. The direction of rotation was reversed in the YP-38 service test prototypes and production P-38 models.) The engines have long propeller gear drive sections to aid in streamlining aircraft, and are sometimes referred to as “long-nose Allisons.”

The V-1710-11 and -15 had a compression ratio of 6.65:1. They had a continuous power rating of 1,000 horsepower at 2,600 r.p.m. at Sea Level, and 1,150 horsepower at 2,950 r.p.m. for takeoff. The combination of a gear-driven supercharger and an exhaust-driven General Electric B-1 turbosupercharger allowed these engines to maintain their rated power levels to an altitude of 25,000 feet (7,620 meters).

The -11 and -15 were 7 feet, 10.46 inches (2.399 meters) long. The -11 was 3 feet, 6.59 inches (1.082 meters) high and 2 feet, 4.93 inches (0.7348 meters) wide. It weighed 1,300 pounds (589.7 kilograms). The -15 was 3 feet, 4.71 inches (1.034 meters) high, 2 feet, 4.94 inches (0.7351 meters) wide, and weighed 1,305 pounds (591.9 kilograms).

A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)
A 1939 Allison Engine Company V-1710-33 liquid-cooled, supercharged SOHC 60° V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum. This engine weighs 1,340 pounds (607.8 kilograms) and produced 1,040 horsepower at 2,800 r.p.m. During World War II, this engine cost $19,000. (NASM)

The XP-38 had a maximum speed of 413 miles per hour (664.66 kilometers per hour) at 20,000 feet (6,096 meters) and a service ceiling of 38,000 feet (11,582.4 meters).

The XP-38 was unarmed, but almost all production Lightnings carried a 20 mm auto cannon and four Browning .50-caliber machine guns grouped together in the nose. They could also carry bombs or rockets and jettisonable external fuel tanks.

Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)
Lockheed XP-38 37-457. (San Diego Air and Space Museum Archive)

The prototype XP-38 was damaged beyond repair when, on approach to Mitchel Field, New York, 11 February 1939, both engines failed to accelerate from idle due to carburetor icing. Unable to maintain altitude, Lieutenant Kelsey crash landed on a golf course and was unhurt.

Testing continued with thirteen YP-38A pre-production aircraft and was quickly placed in full production. The P-38 Lightning was one of the most successful combat aircraft of World War II. By the end of the war, Lockheed had built 10,037 Lightnings.

Lockheed test pilot Tony LeVier in the cockpit of P-38J-10-LO Lightning 42-68008. (Lockheed Martin)

© 2019, Bryan R. Swopes

Facebooktwitterredditpinterestlinkedinmailby feather