Tag Archives: All-Weather Interceptor

16 July 1953

LCOL William F. Barns with his North American Aviation F-86D-35-NA Sabre 51-6145, after his record-setting flight, 16 July 1953. (U.S. Air Force)

16 July 1953: Lieutenant Colonel William F. Barns, United States Air Force, set a Fédération Aéronautique Internationale (FAI) absolute World Record for Speed Over a 3 Kilometer Straight Course at the low-altitude course at the Salton Sea, California. ¹

Colonel Barns flew this North American Aviation F-86D-35-NA Sabre, serial number 51-6145, a radar-equipped all-weather interceptor. Lieutenant Colonel Barns was the Air Material Command’s pilot representative at the North American Aviation Los Angeles plant. The Sabre was a standard production airplane, the first Block 35 model built. It was fully loaded with twenty-four 2.75-inch (70 millimeter) aerial rockets.

Barns made the FAI-required four passes—two in each direction—in the Sabre interceptor. His four passes were timed at 720.574, 710.515, 721.351, and 710.350 miles per hour. (1,159.651, 1,143.463, 1,160.902, and 1,143.198 kilometers per hour).

Lieutenant Colonel William F. Barns, the Air Material Command’s pilot representative at the North American Aviation Los Angeles plant, in the cockpit of a brand-new North American Aviation F-86D-30-NA Sabre, 51-6112. (Jet Pilot Overseas)

Barns averaged 715.745 miles per hour (1,151.88 kilometers per hour)  at only 125 feet (38 meters) above the surface. The air temperature was 105 °F. (40.5 °C.)

The surface of the Salton Sea is -236 feet (-71.9 meters)—below Sea Level. Barns’ Sabre was flying at -111 feet (-33.8 meters). Under these conditions, the speed of sound, Mach 1, was 794 miles per hour (1,278 kilometers per hour), so the margin between the record speed and the onset of transonic compressibility effects was increased. Barns’ Sabre reached a maximum 0.91 Mach under these conditions.

North American Aviation F-86D-35-NA Sabre 51-6145, FAI World Speed Record holder.
North American Aviation F-86D-35-NA Sabre 51-6145, FAI World Speed Record holder.

The Associated Press reported the event:

Air Force Colonel Breaks Record

THERMAL, Calif. (AP)—An Air Force colonel flashed to a new air speed record of 715.7 miles per hour Thursday in a north American F-86D Sabre Jet.

Skimming over the hot beach of Southern California’s Salton Sea, Lt. Col. William F. Barns, 32, broke the record set last Nov. 19 over the same run by Capt. J. Slade Nash of Edwards Air Force Base.

On his first try, Barns averaged 713.6 miles per hour, a record performance, but came back a half hour later to beat that.

The airplane could not exceed 500 meters altitude (1,640 feet) at any time after takeoff on the trial, and the 3-kilometer dash had to be made below 100 meters (328 feet).

The Daily Illini, 17 July 1953, Vol. 82, Number 189, at Page 1, Column 2.

The same F-86D, 51-6145, flown by Captain Harold E. Collins, set an FAI World Record for Speed Over a 15/25 Kilometer Straight Course of 1,139.219 kilometers per hour (707.878 miles per hour) at Vandalia. Ohio, 1 September 1953. ²

William Frederick Barns was born 30 August 1920 at Baltimore, Maryland. He was the son of Claude Cox Barns and Nellie C. Hedrick Barns. The family moved to the Hawaiian Islands in 1925. He attended Theordore Roosevelt High School, in Honolulu. In 1940, William was employed as a clerk at the Bishop National Bank.

Barns began civilian flight training at John Rodgers Field near Honolulu in 1941, and was at the airfield during the attack on the Hawaiian Islands by the Imperial Japanese Navy, 7 December 1941. Barns enlisted in U.S. Army Air Corps 13 April 1942. He had brown hair and eyes, was 5 feet, 10 inches (1.78 meters) tall, and weighed 138 pounds. After qualifying as a pilot at Luke Field, Arizona, Barns was commissioned as a second lieutenant, U.S. Army Air Forces.

During World War II, Barns flew 210 combat missions with the 324th Fighter Group. He was awarded the Distinguished Flying Cross and the Silver Star.

Major and Mrs. William F. Barns, Honolulu, Oahu, Hawaiian Islands,1949.

Colonel Barns married Miss Marylouise Hamilton at the Flyer’s Chapel of the Mission Inn, Riverside, California, 18 August 1947. They had two children, Terrie and Bill. At the time of Barn’s world speed record, the family resided in Palos Verdes Estates, a few miles south of the North American factory.

Colonel Barns retired from the U.S. Air Force, 31 May 1966. He died in Phoenix, Arizona, 17 April 1995.

North American Aviation F-86D-1-NA Sabre 50-463. (North American Aviation, Inc.)

The F-86D was an all-weather interceptor developed from North American Aviation F-86 Sabre day fighter. It was the first single-seat interceptor and it used a very sophisticated—for its time—electronic fire control system. It was equipped with radar and armed with twenty-four unguided 2.75-inch (69.85 millimeter) diameter Mark 4 Folding-Fin Aerial Rockets (FFAR) rockets carried in a retractable tray in its belly.

A North American Aviation, Inc. advertisement, 1953. (Vintage Ad Browser)

The aircraft was so complex that the pilot training course was the longest of any aircraft in the U.S. Air Force inventory, including the Boeing B-47 Stratojet.

The F-86D was larger than the F-86A, E and F fighters, with a wider fuselage. Its length was increased to 40 feet, 3 inches (12.268 meters) with a wingspan of 37 feet, 1.5 inches (11.316 meters), and its height is 15 feet, 0 inches (4.572 meters). The interceptor had an empty weight of 13,518 pounds (6,131.7 kilograms), and maximum takeoff weight of 19,975 pounds (9,060.5 kilograms). It retained the leading edge slats of the F-86A, F-86E and early F-86F fighters. The horizontal stabilizer and elevators were replaced by a single, all-moving stabilator. All flight controls were hydraulically boosted. A “clamshell” canopy replaced the sliding unit of earlier models

The F-86D was powered by a General Electric J47-GE-17 engine. This was a single-shaft, axial-flow turbojet with afterburner. The engine had a 12-stage compressor, 8 combustion chambers, and single-stage turbine. The J47-GE-17 was equipped with an electronic fuel control system which substantially reduced the pilot’s workload. It had a normal (continuous) power rating of 4,990 pounds of thrust (22.20 kilonewtons); military power, 5,425 pounds (24.13 kilonewtons) (30 minute limit), and maximum 7,500 pounds of thrust (33.36 kilonewtons) with afterburner (15 minute limit). (All power ratings at 7,950 r.p.m.) It was 18 feet, 10.0 inches (5.740 meters) long, 3 feet, 3.75 inches (1.010 meters) in diameter, and weighed 3,000 pounds (1,361 kilograms).

North American Aviation F-86D-20-NA Sabre 51-3045. (U.S. Air Force)

The maximum speed of the F-86D was 601 knots (692 miles per hour/1,113 kilometers per hour) at Sea Level, 532 knots (612 miles per hour/985 kilometers per hour) at 40,000 feet (12,192 meters), and 504 knots (580 miles per hour/933 kilometers per hour)at 47,800 feet (14,569 meters).

The F-86D had an area intercept range of 241 nautical miles (277 statute miles/446 kilometers) and a service ceiling of 49,750 feet (15,164 meters). The maximum ferry range with external tanks was 668 nautical miles (769 statute miles/1,237 kilometers). Its initial rate of climb was 12,150 feet per minute (61.7 meters per second) from Sea Level at 16,068 pounds (7,288 kilograms). From a standing start, the F-86D could reach its service ceiling in 22.2 minutes.

North American Aviation F-86D-60-NA Sabre 53-4061 firing a salvo of FFARs.

The F-86D was armed with twenty-four 2.75-inch (69.85 millimeter) unguided Folding-Fin Aerial Rockets (FFAR) with explosive warheads. They were carried in a retractable tray, and could be fired in salvos of  6, 12, or 24 rockets. The FFAR was a solid-fuel rocket. The 7.55 pound (3.43 kilogram) warhead was proximity-fused, or could be set for contact detonation, or to explode when the rocket engine burned out.

The F-86D’s radar could detect a target at 30 miles (48 kilometers). The fire control system calculated a lead-collision-curve and provided guidance to the pilot through his radar scope. Once the interceptor was within 20 seconds of its target, the pilot selected the number of rockets to fire and pulled the trigger, which armed the system. At a range of 500 yards (457 meters), the fire control system launched the rockets.

A potential adversary of the North American Aviation F-86D Sabre all-weather interceptor was the Tupolev Tu-85 long-range strategic bomber.

Between December 1949 and September 1954, 2,505 F-86D Sabres (sometimes called the “Sabre Dog”) were built by North American Aviation. There were many variants (“block numbers”) and by 1955, almost all the D-models had been returned to maintenance depots or the manufacturer for standardization. 981 of these aircraft were modified to a new F-86L standard. The last F-86D was removed from U.S. Air Force service in 1961.

After its service with the United States Air Force, the world-record-setting Sabre, 51-6145, was transferred to NATO ally, the Royal Hellenic Air Force.

North American Aviation F-86D-30-NA Sabre 51-6143, right roll over Malibu, California.

¹ FAI Record File Number 9868

² FAI Record File Number 8869

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 April 1949

Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)
Prototype Lockheed YF-94 48-356, first flight, 16 April 1949. (U.S. Air Force)
Anthony M. "Tony" LeVier.
Anthony M. “Tony” LeVier.

16 April 1949: At Van Nuys Airport, California, test pilot Tony LeVier and flight test engineer Glenn Fulkerson made the first flight of the Lockheed YF-94 prototype, serial number 48-356. The aircraft was the first jet-powered all-weather interceptor in service with the United States Air Force and was the first production aircraft powered by an afterburning engine.

Two prototypes were built at Lockheed Plant B-9, located on the east side of Van Nuys Airport. Two TF-80C-1-LO (later redesignated T-33A) Shooting Star two-place trainers, 48-356 and 48-373, were modified with the installation of air intercept radar, an electronic fire control system, radar gun sight, four Browning AN-M3 .50-caliber (12.7 × 99 NATO) aircraft machine guns and a more powerful Allison J33-A-33 turbojet engine with water-alcohol injection and afterburner. The rear cockpit was equipped as a radar intercept officer’s station.

Right side profile of the Lockheed YF-94A Starfire prototype, 48-356, during its first flight, 16 April 1949. (San Diego Air & Space Museum Archives)
Right side profile of the Lockheed YF-94 prototype, 48-356, during its first flight, 16 April 1949. (San Diego Air & Space Museum Archives)

It was initially thought that the project would be a very simple, straightforward modification. However, the increased weight of guns and electronics required the installation of a more powerful engine than used in the T-33A. The new engine required that the aft fuselage be lengthened and deepened. Still, early models used approximately 80% of the parts for the F-80C fighter and T-33A trainer. The Air Force ordered the aircraft as the F-94A. Improvements resulted in an F-94B version, but the definitive model was the all-rocket-armed F-94C Starfire.

The Allison J33-A-33 was a single-shaft turbojet engine with a single-stage centrifugal-flow compressor, 14 combustion chambers and, a single-stage axial flow turbine. The engine was rated at 4,600 pounds of thrust (20.46 kilonewtons) and 6,000 pounds (26.69 kilonewtons) with afterburner. The J33-A-33 was 17 feet, 11.0 inches (5.461 meters) long, 4 feet, 1.3 inches (1.252 meters) in diameter and weighed 2,390 pounds (1,084 kilograms).

Originally a P-80C Shooting Star single-place fighter, 48-356 had been modified at Lockheed Plant B-9 in Van Nuys to become the prototype TF-80C two-place jet trainer (the designation was soon changed to T-33A), which first flew 22 March 1948. It was then modified as the prototype YF-94. 48-356 was later modified as the prototype F-94B. It is in the collection of the Air Force Flight Test Museum, Edwards Air Force Base, and is in storage awaiting restoration.

Underside of the prototype Lockheed YF-94A Starfire, 49-356, during its first flight, 16 April 1949. (San Diego air & Space Museum Archives)
Underside of the prototype Lockheed YF-94, 49-356, during its first flight, 16 April 1949. (San Diego Air & Space Museum Archives)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

26 December 1956

Convair Chief Test Pilot Richard Lowe Johnson. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Convair Chief Test Pilot Richard Lowe Johnson. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

26 December 1956: Convair’s Chief Test Pilot, Richard Lowe Johnson (1917–2002,) made the first flight of the Convair F-106A-1-CO Delta Dart, U.S. Air Force serial number 56-451, at Edwards Air Force Base in the high desert of southern California. It reached 30,000 feet (9,144 meters) and 0.8 Mach during the 20-minute flight, which had to be aborted due to mechanical problems.

Convair F-106A-1-CO 56-451 at Edwards Air Force Base, California. (U.S. Air Force)

Built at the Convair Division of General Dynamics at San Diego, California, the delta-winged interceptor was trucked to Edwards on 14 December and prepared for its first flight.

The Convair F-106A Delta Dart was the primary all-weather interceptor of the United States Air Force from 1959 to 1988, when it was withdrawn from service with the Air National Guard. It was a single-seat, single-engine delta-winged aircraft capable of speeds above Mach 2.

The airplane was a development of the earlier F-102A Delta Dagger, and was initially designated F-102B. However, so many changes were made that it was considered to be a new aircraft.

Convair F-106A-1-CO Delta Dart 56-451 landing at Edwards AFB. (U.S. Air Force)

The F-106A is 70 feet, 8¾ inches (21.558 meters) long with a wingspan of 38 feet, 4 inches (11.684 meters). The top of the vertical fin was 20 feet, 3¼ inches (6.179 meters) high. The Delta Dart weighs 24,646 pounds (11,179 kilograms) empty, 35,500 pounds (16,103 kilograms) gross, and has a maximum takeoff weight (MTOW) of 41,831 pounds (18,974 kilograms).

The F-106 was powered by a Pratt & Whitney J75-P-17 afterburning turbojet engine. The J75-P-17 was a two-spool axial-flow turbojet engine with afterburner. It used a 15-stage compressor section (8 high- and 7 low-pressure stages) and a 3-stage turbine section (1 high- and 2-low pressure stages. The J75-P-17 was rated at 16,100 pounds of thrust (71.62 kilonewtons) 24,500 pounds (108.98 kilonewtons) with afterburner. The engine was 3 feet, 7.0 inches (1.092 meters) in diameter, and weighed 5,875 pounds (2,665 kilograms)

The interceptor has a cruise speed of 650 miles per hour (1,046 kilometers per hour). Major Joseph Rogers demonstrated the maximum speed of Mach 2.31 (1,525 miles per hour/2,454 kilometers per hour) at 40,000 feet (12,192 meters) during his record-breaking run. The F-106A had a service ceiling is 57,000 feet (17,374 meters) and a rate of climb of 29,000 feet per minute (150 meters per second). It had a combat radius of 575 miles (925 kilometers) and a maximum range of 1,809 miles (2,911 kilometers).

Convair F-106A-1-CO 56-451 during flight testing near Edwards AFB. (U.S. Air Force)

The Delta Dart was armed with four AIM-4 Falcon air-to-air guided missiles and one AIM-2A Genie unguided rocket with a 1.5 kiloton W25 nuclear warhead. In 1972, the General Electric M61 Vulcan 20mm cannon was added.

Convair built 342 F-106 interceptors. 277 were F-106As and the remainder were F-106B two-seat trainers.

56-451, the first F-106A to fly, was transferred to the National Museum of the United States Air Force in 1970. It is presently displayed at Selfridge Air Force Base, near Mount Clemens, Michigan.

Convair F-106A-1-CO Delta Dart 56-451 makes its first flight at Edwards AFB 26 December 1956. (U.S. Air Force)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 December 1954

Captain Richard James Harer, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Captain Richard James Harer, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

22 December 1954: At Edwards Air Force Base in the high desert of southern California, test pilot Captain Richard James Harer was flying a Lockheed F-94C-1-LO Starfire, serial number 50-962.¹ Harer was accompanied by fellow test pilot Captain Milburn G. Apt in a chase plane.

Lockheed F-94C-1-LO Starfire 50-966, the same type airplane flown by Captain Richard Harer, 22 December 1954, is accompanied by Lockheed F-80C-1-LO Shooting Star 47-176 chase plane. (Lockheed)
Lockheed F-94C-1-LO Starfire 50-966, an all-weather interceptor of the same type flown by Captain Richard J. Harer, 22 December 1954. The Starfire is accompanied by a Lockheed F-80C-1-LO Shooting Star chase plane, 47-176. (Lockheed Martin)

The Lockheed F-94 was the first U.S. production fighter aircraft to be equipped with a drag chute to provide aerodynamic braking on landing. (Drag chutes had been in use on larger aircraft since the 1930s.) There was speculation that the sudden deceleration provided by a drag chute might be useful during air-to-air combat.

Captain Harer’s test flight was to determine what would happen when the drag chute opened while the airplane was traveling at 600 miles per hour (96 kilometers per hour).

In this scene from the motion picture "Toward The Unknown" (Toluca Productions, 1956) which starred William Holden and Lloyd Nolan in a story about test pilots at Edwards Air Force Base, a Lockheed F-94C Starfire has released a drag chute in flight, simulating Captain Richard Harer's test flight of 22, December 1954.
In this scene from the motion picture “Toward The Unknown” (Toluca Productions, 1956) which starred William Holden and Lloyd Nolan in a story about test pilots at Edwards Air Force Base, a Lockheed F-94C Starfire has released a drag chute in flight, simulating Captain Richard J. Harer’s test flight of 22 December 1954. (Warner Brothers)

 LIFE Magazine described the test in the following excerpt:

LIFE Magazine, 18 June 1956. . . A captain named Richard J. Harer was assigned to make the test in an F-94C, capable of flying 600 miles an hour. The plane was equipped with a manual release, so Harer could get rid of the parachute after the test. In the event that the manual release failed, Harer could get rid of the parachute by detonating a small explosive charge which was wired to the rope that secured the parachute to the plane. If both of these devices failed, Harer could still get rid of the parachute by going into a dive and maneuvering the parachute into the blast of flame from his afterburner. In sum, a thoughtful arrangement of affairs. Harer got into his plane and took it up to 20,000 feet, closely followed by a chase aircraft flown by another captain named Milburn Apt. Harer opened the parachute, began to tumble crazily across the sky and then—as far as anyone knows—must have tried the manual release. It failed. Then, because he was a cool, skillful pilot, Harer must have kept his head and tried the explosive charge, although no one is sure what he did. In any case, the charge did not explode. By this time Harer was plummeting out of control toward the dry lake bed at perhaps 500 miles an hour, with Captain Apt flying right beside him shouting advice over the radio. Harer’s plane continued down, wallowing, gyrating, the deadly parachute never quite getting into the flame of the afterburner. Harer crashed. His plane burst into flames.

Lockheed F-94C-1-LO Starfire 50-1041 deploys its drogue chute on touchdown. (U.S. Air Force)
Lockheed F-94C-1-LO Starfire 50-1041 deploys its drag chute on touchdown. (U.S. Air Force)

Captain Apt landed on the lake bed at almost the instant of the crash. The two planes, one burning, one under control, skidded along beside each other. As soon as he came to a halt, Apt leaped out of his plane and ran over to Harer’s. “It was nothing but fire,” Apt remembers. “The only part of the plane I could see sticking out of the flames was the tip of the tail.”

Apt dashed around to the other side of Harer’s plane. Strangely, this side was not burning. Apt was able to climb up onto the plane and look through the Plexiglas canopy into the cockpit. It was filled with smoke, but he could see Harer inside, feebly, faintly moving his head. Apt grabbed the canopy release, a device on the outside of the plane designed for just such and emergency. It failed.

Lockheed F-94C-1-LO Starfire 50-1034 with its drogue chute deployed for aerodynamic braking on landing. (U.S. Air Force)
Lockheed F-94C-1-LO Starfire 50-1034 with its drag chute deployed for aerodynamic braking on landing. (U.S. Air Force)

The dry lake bed has absolutely nothing on its surface except the fine-grained sand of which it is composed. No sticks, no stones, nothing that Apt might have picked up to smash the canopy. He tried to pry it off with his bare hands, an effort that, had it not been for the circumstances, would have been ludicrous. He smashed it with his fists and succeeded only in injuring himself. Meanwhile he could see Harer inside, the fire beginning to get to him now.

Captain Richard J. Harer's Lockheed F-94C-1-LO Starfire, 50-962. The airplane has an air data boom mounted on teh nose for flight testing, and carries jettisonable fuel tanks under its wings. (U.S. Air Force photograph via Million Monkey Theatre)
Captain Richard J. Harer’s Lockheed F-94C-1-LO Starfire, 50-962. The airplane has an air data boom mounted on the nose for flight testing, and carries jettisonable fuel tanks under its wings. (U.S. Air Force photograph via Million Monkey Theater)

As Captain Apt smashed his fists on the canopy, a single jeep raced across the lake bed toward the plane at 70 miles an hour. Reaching the plane, the driver leaped out and ran over to it, carrying the only useful piece of equipment he had: a five-pound brass fire extinguisher, the size of a rolling pin. He could as well have tried to put out the fire by spitting on it. Apt and the jeep driver shouted contradictory instructions at each other above the growing roar of the fire. The jeep driver emptied his extinguisher on the forward part of the plane, then handed the empty container to Apt. Apt raised it above his head and smashed it down on the canopy. It bounced off. He pounded the canopy again and again, as hard as he could, and each time the extinguisher bounced off. “It was like hitting a big spring,” he says forlornly. “I couldn’t break it.”

Meanwhile, 9,950 men on the base quietly pursued their jobs, unaware of the accident. The obstetrician said, “Come back Thursday, Mrs. Smith,” Robert Hawn worked on his YAPS, and Smith, Douglas S., changed a tire. The only immediate spectators, aside from Apt and the jeep driver, were the Joshua trees growing all along the edge of the lake bed, very old and mournful.

By this time Captain Harer’s flesh was on fire. The jeep driver dashed back to his vehicle and returned with a five-gallon gasoline can. “My God.” Apt thought. “No, no,” the jeep driver cried, “it’s full of water. It’s all right.”

Apt hefted the can, which weighed nearly 50 pounds. He raised it high in the air and smashed it down. The canopy cracked. Apt hit it again, opening a hole in it, letting out the smoke inside. In a few seconds he had broken a large jagged opening through which Harer could be pulled out. “It was a tough job,” Apt says. “Harer was a very tall man.” Was a tall man. Not is, but was.

“He’s not tall now,” Apt says. “Both his feet were burned off.” Captain Harer lived. Today, he gets around very well on his artificial feet. He has been promoted to major and will soon be honorably retired from the Air Force with a pension. He has no memory whatever of the accident. He recalls flying at 20,000 feet and popping open the parachute, and his next memory is of awakening in a hospital two weeks later. . . .

Excerpted from “10,000 Men to a Plane,” LIFE Magazine, 18 June 1956.

Captain Milburn Grant Apt, United States Air Force, with a Lockheed T-33A Shooting Star. (LIFE Magazine)
Captain Milburn Grant Apt, United States Air Force, with a Lockheed T-33A Shooting Star at Edwards Air Force Base, 1956. (LIFE Magazine via Jet Pilot Overseas)
Soldier's Medal
The Soldier’s Medal

For his heroism in the face of great danger, Captain Mel Apt was awarded the Soldier’s Medal, the highest award for valor in a non-combat mission for Army and Air Force personnel.  The regulation establishing the award states, “The performance must have involved personal hazard or danger and the voluntary risk of life under conditions not involving conflict with an armed enemy. Awards will not be made solely on the basis of having saved a life.”

Mel Apt would continue as a test pilot at Edwards Air Force Base, and on 26 September 1956, he would be the first pilot to exceed Mach 3 when he flew the Bell X-2 rocketplane to Mach 3.196 (2,094 miles per hour/3,377 kilometers per hour) at 65,589 feet (19,992 meters). Just seconds later, the X-2 began uncontrolled oscillations and came apart. Mel Apt was unable to escape from the cockpit and was killed when the X-2 hit the desert floor. He was the thirteenth test pilot to be killed at Edwards since 1950.

Richard James Harer was born at Painesville, Ohio, 8 October 1924. He was the son of Otto H. Harer, a foundry manager, and Edith Mynchenberg Harer. he had a younger sister, Marilyn.

In 1942, Harer was a student at the University of Ohio. A member of the Class of 1945, he studied engineering and was a member of the Phi Eta Sigma (ΦΗΣ) fraternity.

World War II interrupted Harer’s education. On 4 December 1942, he enlisted as a private in the Air Corps Enlisted Reserve Corps. On 2 March 1943, Private Harer was selected as an Aviation Cadet and assigned to flight training. He was commissioned as a second lieutenant, Army of the United States (A.U.S.), 7 January 1944. On 6 November 1944, Harer was promoted to first lieutenant, A.U.S. On 25 September 1945, First Lieutenant Harer was transferred to the Air Corps Reserve. In 1947, the United States Air Force was established as a separate military service. Richard Harer was appointed a second lieutenant, U. S. Air Force, with his date of rank retroactive to 8 October 1945.

Lieutenant Harer flew 31 combat missions in the European Theater of Operations. H was awarded the Distinguished Flying Cross, and the Air Medal with three oak leaf clusters.

Following the war, Richard Harer returned to his studies, now at the University of Toledo, Toledo, Ohio. He was a member of the Sigma Beta Phi (ΣΒΦ) fraternity, the American Society of Mechanical Engineers, and the Engine Club.

On 21 January 1948, Lieutenant Harer married Miss Barbara Alice Heesen. They would have four children.

After graduating from the U.S. Air Force Test Pilot School, Captain Harer was assigned as a test pilot at the Air Force Flight Test Center, Edwards Air Force Base, California. He conducted performance testing on the Republic F-84F Thunderstreak. Harer flew an F-84F in the Bendix Trophy Race, 4 September 1954. He made one flight in the Bell X-1B rocketplane, 4 November 1954.

1954 Bendix Trophy Race. Captain Richard J. Harer is second from left. (San Bernardino Sun. 4 September 1954, Page 1, Columns 5–7)

¹ Several sources list the U.S. Air Force serial number of the F-94C flown by Captain Harer as “50-692,” however that serial number is actually assigned to a Boeing C-97C-35-BO Stratofreighter four-engine medical transport. It is apparent that the numbers have been transposed.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

22 December 1949

North American Aviation YF-86D Sabre 50-577
North American Aviation YF-86D Sabre 50-577. (U.S. Air Force)
George S. Welch, North American Aviation test pilot, wearing his orange flight helmet. An F-86 Sabre is in the background. (San Diego Air and Space Museum Photo Archives)
George S. Welch

22 December 1949: North American Aviation, Inc.,  test pilot George S. Welch made the first flight of the YF-86D Sabre, 50-577, at Edwards Air Force Base, in the high desert of southern California.

Based on the F-86A day fighter, the F-86D (originally designated YF-95) was a radar-equipped, rocket-armed, all-weather interceptor. Its first flight took place only nine years after the first flight of North American’s prototype NA-73X, which would become the famous P-51 Mustang fighter of World War II. This was an amazing jump in technology in just a few years.

The interceptor was intended to be an improved variant of the F-86A Sabre day fighter. During development, though, so many changes became necessary that the F-86D shared only about 25% of its parts of the F-86A. Essentially an new airplane, the Air Force assigned it the designation YF-95. It would revert to the F-86D designation before it actually flew.

North American Aviation YF-86D Sabre 50-577, the first of two service test aircraft, at the North American Aviation flight line, Los Angeles International Airport. (North American Aviation)
North American Aviation YF-86D Sabre 50-577, the first of two service test aircraft, at the North American Aviation flight line, Los Angeles International Airport. (North American Aviation)

The first YF-86D (still identified as YF-95) was rolled out at North American’s Inglewood plant in September 1949. In late November it was partially disassembled to be transported by truck to Edwards Air Force Base, about 120 miles (193 kilometers) away. The airplane was then reassembled and ground tested to prepare it for flight.

The first two test aircraft carried no armament or fire control/radar system and retained the sliding canopy of the F-86A. This would be replaced with a hinged “clamshell” canopy in production models. The airplane was 40 feet, 3.1 inches (12.271 meters) long with a wingspan of 37 feet, 1 inch (11.294 meters) and overall height of 15 feet, 0 inches (4.572 meters). Its empty weight was 12,470 pounds (5,656 kilograms) and maximum takeoff weight was 18,483 pounds (8,384 kilograms).

The service test aircraft and early production airplanes were powered by a General Electric J47-GE-17 single-shaft axial-flow turbojet engine, producing 5,425 pounds of thrust (24.132 kilonewtons) at 7,950 r.p.m., or 7,500 pounds (33.362 kilonewtons) with afterburner. This engine was equipped with an electronic fuel control system which substantially reduced the pilot’s workload. The engine had a 12-stage compressor, 8 combustion chambers, and single-stage turbine. It was 226.0 inches (5.740 meters) long, 39.75 inches (1.010 meters) in diameters, and weighed 3,000 pounds (1,361 kilograms).

The first production aircraft, F-86D-1-NA Sabre, had a maximum speed of 614 knots (707 miles per hour/1,137 kilometers per hour) at Sea Level, and 539 knots (620 miles per hour/998 kilometers per hour)at 40,000 feet (12,192 meters). From a standing start, the interceptor could climb to 40,000 feet in 5 minutes, 54 seconds with a full combat load. The service ceiling was 54,000 feet (16,460 meters).

A production North American Aviation F-86D-60-NA Sabre, 53-4061, firing a salvo of 2.75-inch rockets. (U.S. Air Force)

The F-86D Sabre carried no guns. Instead, its armament consisted of twenty-four 2.75-inch (70 millimeter) Folding Fin Aerial Rockets (FFAR) with explosive warheads, carried in a retractable tray in the airplane’s belly. A Hughes electronic fire control computer was used to calculate an interception path and determine the firing point for the unguided rockets.

The single-seat F-86D Sabre was nearly 50 knots faster than the contemporary twin-engine Northrop F-89 Scorpion and Lockheed F-94 Starfire, both of which carried a two-man crew. North American Aviation built 2,504 F-86D Sabres, and these equipped nearly two-thirds of the Air Defense Command interceptor squadrons.

North American Aviation YF-86 Sabre 50-577, NACA 149. (NASA)
North American Aviation YF-86D Sabre 50-577, NACA 149, at the NACA Ames Research Center, Moffett Field, California. (NASA)

After the Air Force service test program was completed, 50-577 was transferred to the National Advisory Committee on Aeronautics (NACA) Ames Aeronautical Laboratory at Moffett Field, California, and designated NACA 149. It was used as a variable stability aircraft for flight testing various control configurations for feel, sensitivity and response.

NACA 149 remained at Ames from 26 June 1952 to 15 February 1960.

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather