Tag Archives: Allison Division of General Motors

20 March 1966

Test pilot Jack L. Zimmerman with the record-setting Hughes YOH-6A Light Observation Helicopter, 62-4213. (FAI)
Hughes Aircraft Division test pilot Jack L. Zimmerman with the record-setting Hughes YOH-6A Light Observation Helicopter, 62-4213. (FAI)

20 March 1966: At Edwards Air Force Base in the high desert of southern California, Hughes Aircraft Company test pilot Jack L. Zimmerman flew the third prototype YOH-6A Light Observation Helicopter, 62-4213, to set a Fédération Aéronautique Internationale (FAI) World Record for Distance Over a Closed Circuit Without Landing of 1,700.12 kilometers (1,056.41 miles).¹ Fifty-three years later, this record still stands.

One week later, Zimmerman would set six more World Records ² with the “Loach.”

Hughes YOH-6A 62-4213 at Edwards Air Force Base, 1966. (FAI)
Hughes YOH-6A 62-4213 at Edwards Air Force Base, 1966. (FAI)

The Hughes Model 369 was built in response to a U.S. Army requirement for a Light Observation Helicopter (“L.O.H.”). It was designated YOH-6A, and the first aircraft received U.S. Army serial number 62-4211. It competed with prototypes from Bell Helicopter Company (YOH-4) and Fairchild-Hiller (YOH-5). All three aircraft were powered by a lightweight Allison Engine Company turboshaft engine. The YOH-6A won the three-way competition and was ordered into production as the OH-6A Cayuse. It was nicknamed “loach,” an acronym for L.O.H.

The YOH-6A was a two-place light helicopter, flown by a single pilot. It had a four-bladed, articulated main rotor which turned counter-clockwise, as seen from above. (The advancing blade is on the helicopter’s right.) Stacks of thin stainless steel “straps” fastened the rotor blades to the hub and were flexible enough to allow for flapping and feathering. Hydraulic dampers controlled lead-lag. Originally, there were blade cuffs around the main rotor blade roots in an attempt to reduce aerodynamic drag, but these were soon discarded. A two-bladed semi-rigid tail rotor was mounted on the left side of the tail boom. Seen from the left, the tail-rotor rotates counter-clockwise. (The advancing blade is on top.)

The third prototype YOH-6A, 62-4213, testing the XM-7 minigun. (U.S. Army)
The third prototype YOH-6A, 62-4213, testing the XM-7 twin M60 7.62 mm weapons system. (U.S. Army)

The YOH-6A was powered by a T63-A-5 turboshaft engine (Allison Model 250-C10) mounted behind the cabin at a 45° angle. The engine was rated at 212 shaft horsepower at 52,142 r.p.m. (102% N1) and 693 °C. turbine outlet temperature for maximum continuous power, and 250 shaft horsepower at 738 °C., 5-minute limit, for takeoff. Production OH-6A helicopters used the slightly more powerful T63-A-5A (250-C10A) engine.

The Hughes Tool Company Aircraft Division built 1,420 OH-6A Cayuse helicopters for the U.S. Army. The helicopter remains in production as AH-6C and MH-6 military helicopters, and the MD500E and MD530F civil aircraft.

Hughes YOH-6A 62-4213 is in the collection of the United States Army Aviation Museum, Fort Rucker, Alabama.

U.S. Army Hughes YOH-6A prototype 62-4213 at Le Bourget, circa 1965.
U.S. Army Hughes YOH-6A prototype 62-4213 at Aéroport de Paris – Le Bourget, 19 June 1965.(R.A. Scholefield via AVIAFORA)
Jack Zimmerman (The Maroon 1940)

Jack Louis Zimmerman was born 1 September 1921 at Chicago, Illinois, the second of three children of Bernard Zimmerman, an electrician, and Esther Rujawski Zimmerman. Jack graduated from Hirsch High School in Chicago in 1940. He then studied engineering at the University of Chicago, but left to enlist in the U.S. Army Air Corps. He graduated from flight school in 1943 and was commissioned a second lieutenant.

Lieutenant Zimmerman was sent to Freeman Field, Indiana, as part of the Army’s first class of student helicopter pilots, training on the Sikorsky R-4. On completion of training he was assigned to a Liberty ship in the western Pacific as part of a Project Ivory Soap Aviation Repair Unit.

Taking off from the Army Transport Service ship USAT Maj. Gen. Robert Olds (formerly, the Liberty ship, SS Daniel E. Garrett), Lieutenant Zimmerman’s helicopter crashed into the sea. For his heroic actions in saving a passenger’s life, he was awarded the Soldier’s Medal:

Soldier’s Medal

“For heroism displayed in rescuing an enlisted man from drowning on 1 November 1944. While taking off from the flight deck of the SS Daniel E. Garrett, Lieutenant Zimmerman with Private William K. Troche as passenger was forced to land at sea. Lieutenant Zimmerman at the risk of his life made several dives into the plane when his passenger had difficulty in extricating himself from the craft. When Private Troche’s life preserver failed to operate properly, Lieutenant Zimmerman supported him in the water for approximately 30 minutes and afterwards pulled him to a life preserver, which had been thrown from the ship. The heroism displayed by Lieutenant Zimmerman on this occasion reflects great credit upon himself and the military service.” —http://collectair.org/zimmerman.html

Following World War II, Jack Zimmerman was employed as a commercial pilot, and then a test pilot for the Seibel Helicopter S-4 and YH-24 light helicopters, and when the company was bought by Cessna, he continued testing the improved Cessna CH-1 and UH-41 Seneca. In 1963, Zimmerman began working as a test pilot for the Hughes Tool Company’s Aircraft Division. He retired in 1982.

Jack Louis Zimmerman died at San Diego, California, on his 81st birthday, 1 September 2002.

¹ FAI Record File Number 762

² FAI Record File Numbers 771, 772, 9920, 9921, 9922, and 9923

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

17 March 1947

North American Aviation XB-45 45-59479 in flight. (U.S. Air Force)

17 March 1947: The prototype of the United States’ first jet-powered bomber, the North American Aviation XB-45 Tornado, 45-59479, made a one-hour first flight at Muroc Army Air Field (later known as Edwards Air Force Base) with company test pilot George William Krebs at the controls.

The photographs below show the XB-45 parked on Muroc Dry Lake. Notice that the windows over the bombardier’s compartment in the nose are painted on.

The North American Aviation XB-45 Tornado was a four-engine prototype bomber. It had a high-mounted straight wing and tricycle landing gear. It was 74 feet, 0 inches (22.555 meters) long with a wingspan of 89 feet, 6 inches (27.279 meters) and overall height of 25 feet, 2 inches (7.671 meters). It had an empty weight of 41,876 pounds (18,995kilograms) and maximum takeoff weight of 82,600 pounds (37,467 kilograms).

North American Aviation XB-45 Tornado 45-59479 parked on the dry lake bed at Muroc Army Airfield, California. (U.S. Air Force)
North American Aviation XB-45 Tornado 45-59479 parked on Muroc Dry Lake. (U.S. Air Force)
North American Aviation XB-45 45-59479 makes a low pass over the runway. (U.S. Air Force)

The three prototypes were powered by four Allison-built General Electric J35-A-4 turbojet engines, installed in nacelles which were flush with the bottom of the wings. The J35 was a single-shaft engine with an 11-stage axial-flow compressor section and a single-stage turbine. The J35-A-4 was rated at 4,000 pounds of thrust (14.79 kilonewtons). The engine’s maximum speed was 8,000 r.p.m. The J35 was 14 feet, 0 inches (4.267 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter, and weighed 2,400 pounds (1,089 kilograms).

The maximum speed of the XB-45 was 494 miles per hour (795 kilometers per hour) at Sea Level and 516 miles per hour (830 kilometers per hour) at 14,000 feet (4,267 meters). The service ceiling was 37,600 feet (11,461 meters).

North American Aviation XB-45 45-59479 as a test bed for rocket assisted take-off, 24 September 1958. (U.S. Air Force)

The production B-45A Tornado was heavier and had better performance. It was operated by two pilots and carried a bombardier/navigator and a tail gunner. It was 75 feet, 4 inches (22.962 meters) long with a wingspan of 89 feet, 0 inches (27.127 meters) and overall height of 25 feet, 2 inches (7.671 meters).

The B-45A had a total wing area of 1,175 square feet (109.2 square meters). The leading edges were swept aft 3° 30′. Their angle of incidence was 3° with -3° 30′ twist and 1° dihedral.

The bomber’s empty weight was 45,694 pounds (20,726 kilograms) and maximum takeoff weight was 91,775 pounds (41,628 kilograms).

Cutaway illustration of the North American Aviation B-45 Tornado showing internal structure and arrangement. (U.S. Air Force)

The B-45A was powered by four General Electric J47-GE-13 turbojet engines. The J47 was an axial-flow turbojet with a 12-stage compressor and single stage turbine. It had a normal power rating of 4,320 pounds of thrust (19.216 kilonewtons) at 7,370 r.p.m.; military power, 5,200 pounds (23.131 kilonewtons) at 7,950 r.p.m. (30-minute limit); and maximum power rating of 6,000 pounds(26.689 kilonewtons) at 7,950 r.p.m., with water/alcohol injection (5-minute limit). The engine was 12 feet, 0.0 inches (3.658 meters) long, 3 feet, 3.0 inches (0.991 meters) in diameter and weighed 2,525 pounds (1,145 kilograms).

The B-45A Tornado had a cruise speed of 393 knots (452 miles per hour/728 kilometers per hour), and maximum speed of 492 knots (566 miles per hour (911 kilometers per hour) at 4,000 feet (1,219 meters). Its service ceiling was 46,800 feet (14,265 meters) and it had a maximum range of 1,886 nautical miles (2,170 statute miles/3,493 kilometers).

The bomb load was 22,000 pounds (9,979 kilograms). (It was capable of carrying the Grand Slam bomb.) Two Browning .50-caliber AN-M3  machine guns were mounted in the tail for defense, with 600 rounds of ammunition per gun.

41 B-45As were modified the the “Back Breaker” configuration, which enabled them to be armed with nuclear weapons.

The B-45 served with both the United States Air Force and the Royal Air Force. 143 were built, including the three XB-45 prototypes.

On 20 September 1948, the first production B-45A-1-NA Tornado, 47-001, was put into a dive to test the airplane’s design load factor. During the dive, an engine exploded, which tore off several cowling panels. These hit the horizontal stabilizer, damaging it. The B-45 pitched up, and both wings failed due to the g load. The prototype had no ejection seats and test pilots George Krebs and Nicholas Gibbs Pickard, unable to escape, were both killed.

George William Krebs

George William Krebs was born in Kansas City, Missouri, 5 March 1918. He was the first of three children of William J. Krebs, an advertising executive, and Betty Schmitz Krebs. He attended Southwest High School, graduating in 1935.

Krebs studied at the Massachussetts Instititute of Technology (M.I.T.) at Cambridge, Massachussetts. He was a member of the Sigma Chi fraternity.

In 1940, Krebs was the owner of a Luscombe airplane distributorship in Kansas City. He had brown hair, blue eyes and a ruddy complexion. He was 5 feet, 9 inches tall (1.75 meters) and weighed 135 pounds (61 kilograms).

George Krebs married Miss Alice Bodman Neal at Kansas City, Missouri, 26 December 1942. They had one son, William John Krebs II, born 1944.

During World War II, Krebs was employed as a test pilot at the North American Aviation, Inc., B-25 Mitchell medium bomber assembly plant at Kansas City. Prior to taking over the XB-45 project, he was the chief test pilot at K.C.

North American Aviation B-25 Mitchell medium bombers near completion at the Kansas City, Missouri, bomber plant. (Alfred T. Palmer)
Nicholas Gibbs Pickard

Nicholas Gibbs Pickard was born at Brooklyn, New York, 5 November 1916. He was the second of three children of Ward Wilson Pickard, a lawyer, and Alice Rossington Pickard.

During World War II, Pickard served as a ferry pilot for the Royal Air Force Transport Command.

On 21 January 1944, Captain Pickard married Miss Kathleen Baranovsky at Montreal, Quebec, Canada. They had two daughters, Sandra and Manya.

Following the war, Pickard was employed as a test pilot by North American Aviation.

Nicholas Gibbs Pickard was buried at the Pacific Crest Cemetery, Redondo Beach, California.

The tenth production North American Aviation B-45A-1-NA Tornado, 47-011, in flight. (U.S. Air Force)

© 2019, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

10 January 1966

The prototype Bell Model 206A JetRanger, serial number 1, civil registration N8560F, hovering out of ground effect. (Bell Helicopter Company)
The prototype Bell Model 206A JetRanger, serial number 1, civil registration N8560F, hovering out of ground effect. (Bell Helicopter Company)

10 January 1966: The prototype Bell Model 206A JetRanger serial number 1, N8560F, made its first flight at at the Bell Helicopter Company plant at Hurst, Texas. This aircraft would be in production for almost 45 years. The final JetRanger to be built, Bell 206B-3 serial number 4690, was delivered in December 2010 and production came to an end.

During early production of the Model 206A, cabin sections were built by Beechcraft and Agusta then shipped to Bell at Fort Worth. (The vertical seam just to the rear of the fuel cap distinguished the two.) Oil pressure and temperature gauges for the engine and transmission, the loadmeter and fuel quantity indicator were provided by Cessna.

The  Bell JetRanger is a 5-place, single-engine light civil helicopter based on the Bell Helicopter’s unsuccessful OH-4 entrant for the U.S. Army’s Light Observation Helicopter (LOH, or “loach”) contract. It is flown by a single pilot in the right front seat. Dual flight controls can be installed for a second pilot. The helicopter was certified for VFR flight, but could be modified for instrument flight.

The industrial design firm of Charles Wilfred Butler

“. . . was responsible for the complete redesign of the Bell OH-4A prototype army helicopter (1961) into the Bell Jet Ranger (1965). He and his designers restyled the machine inside and out in the manner of automotive design, creating in the process one of the world’s most successful and beautiful helicopters.”

Encyclopedia Britannica.

The JetRanger is 38 feet, 9.5 inches (11.824 meters) long, overall. On standard skid landing gear the overall height is 9 feet, 4 inches (2.845 meters). The Bell 206A has an empty weight of approximately 1,700 pounds (771 kilograms), depending on installed equipment. The maximum gross weight is 3,200 pounds (1,451.5 kilograms). With an external load suspended from the cargo hook, the maximum gross weight is increased to 3,350 pounds (1,519.5 kilograms).

The two-bladed main rotor is semi-rigid and under-slung, a common feature of Bell’s main rotor design. It has a diameter of 33 feet, 4.0 inches (10.160 meters) and turns counter-clockwise (seen from above) at 394 r.p.m. (100% NR). (The advancing blade is on the helicopter’s right side.) The rotor blade has a chord of 1 foot, 1.0 inches (0.330 meter) and 10° negative twist. The airfoil is symmetrical. The cyclic and collective pitch controls are hydraulically-boosted.

The first Bell 206B JetRanger (Bell Helicopter Co.)
The first Bell 206A JetRanger, N8560F. (Bell Helicopter Co.)

The two-bladed tail rotor assembly is also semi-rigid and is positioned on the left side of the tail boom in a pusher configuration. It turns at 2,550 r.p.m., clockwise, as seen from the helicopter’s left. (The advancing blade is below the axis of rotation.) The tail rotor diameter is 5 feet, 6.0 inches (1.676 meters).

The turboshaft engine is mounted above the roof of the fuselage, to the rear of the main transmission. Output shafts lead forward to the transmission and aft to the tail rotor 90° gear box. The transmission and rotor mast are mounted tilting slightly forward and to the left. This assists in the helicopter’s lift off to a hover, helps to offset its translating tendency, and keeps the passenger cabin in a near-level attitude during cruise flight.

A vertical fin is attached at the aft end of the tail boom. The fin is offset 4° to the right to unload the tail rotor in cruise flight. Fixed horizontal stabilizers with an inverted asymmetric airfoil are attached to the tail boom. In cruise flight, these provide a downward force that keeps the passenger cabin in a near-level attitude.

The 206A was powered by an Allison 250-C18 turboshaft engine (T63-A-700) which produced a maximum of 317 shaft horsepower at 104% N1, 53,164 r.pm. The improved Model 206B JetRanger and 206B-2 JetRanger II used a 370 horsepower 250–C20 engine, and the Model 206B-3 JetRanger III had 250-C20B, -C20J or -C20R engines installed, rated at 420 shaft horsepower at 105% N1, (53,519 r.p.m.). Many 206As were upgraded to 206Bs and they are sometimes referred to as a “206A/B.” The Allison 250-C20B has a 7-stage compressor section with 6-stage axial-flow stages, and 1 centrifugal-flow stage. The 4-stage axial-flow turbine has a 2-stage gas producer (N1) and 2-stage power turbine (N2). These were very light weight engines, ranging from just 141 to 173 pounds (64.0 to 78.5 kilograms).

The helicopter’s main transmission is limited to a maximum input of 317 shaft horsepower (100% Torque, 5-minute limit). The engine’s accessory gear unit reduces the output shaft speed to 6,016 r.p.m. N2, which is further reduced by the transmission’s planetary gears, and the tail rotor 90° gear box.

The JetRanger has a maximum speed, VNE, of 150 miles per hour (241 kilometers per hour) up to 3,000 feet (914 meters). Its best rate of climb, VY, is at 60 miles per hour (97 kilometers per hour) and best speed in autorotation (minimum rate of descent and maximum distance) is at 80 miles per hour (129 kilometers per hour), resulting in a glide ratio of about 4:1. The service ceiling is 13,500 feet (4,145 meters) with the helicopter’s gross weight above 3,000 pounds (1,361 kilograms), and 20,000 feet (6,096 meters) when below 3,000 pounds. The helicopter has a maximum range of 430 miles (692 kilometers).

After being used as a factory demonstrator and development aircraft, N8560F was retired from flight status and used as a maintenance ground training device at Bell’s training school at Hurst.

Note: The Model 206A-1 was adopted by the U.S. Army as the OH-58A Kiowa. Though very similar in appearance to the Model 206A and 206B, the OH-58A differs significantly. Few of the parts are interchangeable between the types.

Three view drawing of the Bell Model 206A/B JetRanger with dimensions. (Bell Helicopter TEXTRON)
Three view drawing of the Bell Model 206A/B JetRanger with dimensions. (Bell Helicopter TEXTRON)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

5 January 1956

Piasecki YH-16A-PH Transporter 50-1270 hovers in ground effect.
Piasecki YH-16A-PH Transporter 50-1270 hovers in ground effect. (Piasecki Aircraft Corporation)

5 January 1956: The prototype Piasecki Helicopter Company YH-16A-PH Transporter twin-turboshaft, tandem-rotor helicopter, serial number 50-1270, was returning to Philadelphia from a test flight, when, at approximately 3:55 p.m., the aft rotor desynchronized, collided with the forward rotor and the aircraft broke up in flight. It crashed at the Mattson Farm on Oldman’s Creek Road, near Swedesboro, New Jersey, and was completely destroyed.

Test pilots Harold W. Peterson and George Callahan were killed.

It was determined that a bearing associated with an internal coaxial shaft supporting test data equipment had seized, causing the rotor shaft to fail.

Harold W. Peterson (left) and George Callahan, with the prototype Piasecki YH-16A Turbo Transporter, 50-1270. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Harold W. Peterson (left) and George Callahan, with the prototype Piasecki YH-16A Turbo Transporter, 50-1270. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

At the time, the YH-16 was the largest helicopter in the world. The United States Air Force intended it as a very-long-range rescue helicopter, while the U.S. Army expected it to serve as a heavy lift cargo and troop transport.

The YH-16A had a fuselage length of 78 feet (23.774 meters), and both main rotors were 82 feet (24.994 meters) in diameter. With rotors turning, the overall length was 134 feet ( meters). Their operating speed was 125 r.p.m. Overall height of the helicopter was 25 feet (7.62 meters). The helicopter’s empty weight was 22,506 pounds (10,209 kilograms) and the gross weight was 33,577 pounds (15,230 kilograms).

YH-16 50-1269 was powered by two 2,181.2-cubic-inch-displacement (35.74 liter) air-cooled, supercharged Pratt & Whitney Twin Wasp E2 (R-2180-11) two-row, fourteen-cylinder radial engines with a Normal Power Rating of 1,300 horsepower at 2,600 r.p.m. at 8,000 feet ( meters), and 1,650 horsepower at 2,600 rp.m., for Takeoff.

The second YH-16A, 50-1270, was modified while under construction and was powered by two Allison Division YT38-A-10 turboshaft engines which produced 1,800 shaft horsepower, each. This made the YH-16A the world’s first twin-engine turbine-powered helicopter.

The Piasecki YH-16A Transporter was the world's largest helicopter in 1956. (Piasecki Aircraft Corporation)
The Piasecki YH-16A Transporter was the world’s largest helicopter in 1956. (Piasecki Aircraft Corporation)

The cruise speed of the YH-16A was 146 miles per hour (235 kilometers per hour). In July 1955, Peterson and Callahan had flown 50-1270 to an unofficial record speed of 165.8 miles per hour (266.83 kilometers per hour). The service ceiling was 19,100 feet (5,822 meters) and the maximum range for a rescue mission was planned at 1,432 miles (2,305 kilometers).

After the accident, the H-16 project was cancelled.

Prototype Piasecki YH-16A Transporter 50-1270, hovering in ground effect at Philadelphia Airport, 1955. (Piasecki Aircraft Corporation)
Prototype Piasecki YH-16A Transporter 50-1270, hovering in ground effect at Philadelphia Airport, 1955. (Piasecki Aircraft Corporation)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

7 December 1941

Lieutenants Ken Taylor and George Welch, U.S. Army Air Corps. (U.S. Air Force)
Lieutenants Kenneth Marlar Taylor and George Schwartz Welch, Air Corps, United States Army. (U.S. Air Force)

On the morning of December 7, 1941, very few American fighter pilots were able to get airborne to fight the Japanese attackers. Ken Taylor and George Schwartz were two of them.

Distinguished Service Cross
Distinguished Service Cross

Second Lieutenants Kenneth Marlar Taylor and George S. Welch took two Curtiss-Wright P-40B Warhawk fighters from a remote airfield at Haleiwa, on the northwestern side of the island of Oahu, and against overwhelming odds, each shot down four enemy airplanes: Welch shot down three Aichi D3A Type 99 “Val” dive bombers and one Mitsubishi A6M2 Type 0 (“Zero”) fighter. Taylor also shot down four Japanese airplanes.

Although both officers were nominated for the Medal of Honor by General Henry H. (“Hap”) Arnold, they were awarded the Distinguished Service Cross.

During the War, Welch flew the Bell P-39 Airacobra and Lockheed P-38 Lightning on 348 combat missions. He had 16 confirmed aerial victories over Japanese airplanes and rose to the rank of Major.

Suffering from malaria, George Welch was out of combat and recuperating in Australia. When North American Aviation approached General Arnold to recommend a highly experienced fighter pilot as a test pilot for the P-51H Mustang, Arnold suggested Welch and authorized his resignation from the Air Corps.

Aichi D3A Type 99 dive bomber, “Val”. (San Diego Air and Space Museum Archives)

George Welch tested the P-51H, XP-86 Sabre and YF-100A Super Sabre for North American Aviation. Reportedly, while demonstrating the F-86 Sabre’s capabilities to Air Force pilots during the Korean War, he shot down as many as six MiG 15s.

George Welch was killed while testing a F-100A Super Sabre, 12 October 1954.

A Mitsubishi A6M2 Type 0 Model 21, A1-108, flown by PO2c Sakae Mori, takes of from IJN Akagi, an aircraft carrier of the Imperial Japanese Navy, 7 December 1941. (U.S. Navy)

Ken Taylor scored two more victories at Guadalcanal before wounds received in an air raid sent him back to the United States. He remained in the Air Force until he retired in 1971 with the rank of Brigadier General. He died in 2006.

Curtiss-Wright P-40 Warhawk, circa 1940. (Rudy Arnold Collection/NASM)

The Curtiss-Wright Corporation Hawk 81B (P-40B Warhawk) was a single-seat, single-engine pursuit. It was a low-wing monoplane of all-metal construction, and used flush riveting to reduce aerodynamic drag. It had an enclosed cockpit and retractable landing gear. Extensive wind tunnel testing at the NACA Langley laboratories refined the airplane’s design, significantly increasing the top speed.

The P-40B Warhawk was 31 feet, 8¾ inches (9.671 meters) long, with a wingspan of 37 feet, 4 inches (11.379 meters). Its empty weight was 5,590 pounds (2,536 kilograms), and 7,326 pounds (3,323 kilograms) gross. The maximum takeoff weight was 7,600 pounds (3,447 kilograms).

The P-40B was powered by a liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-C15 (V-1710-33), a single overhead cam (SOHC) 60° V-12 engine, which produced 1,040 horsepower at 2,800 r.p.m., and turned a three-bladed Curtiss Electric constant-speed propeller through a 2:1 gear reduction. The V-1710-33 was 8 feet, 2.54 inches (2.503 meters) long, 3 feet, 5.88 inches (1.064 meters) high, and 2 feet, 5.29 inches (0.744 meters) wide. It weighed 1,340 pounds (607.8 kilograms).

Allison Engineering Co. V-1710-33 V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum Steven F. Udvar-Hazy Center. (NASM)
Allison Engineering Co. V-1710-33 V-12 aircraft engine at the Smithsonian Institution National Air and Space Museum Steven F. Udvar-Hazy Center. (NASM)

Heavier than the initial production P-40, the P-40B was slightly slower, with a maximum speed of 352 miles per hour (567 kilometers per hour) at 15,000 feet (4,572 meters). It had a service ceiling of 32,400 feet (9,876 meters) and range of 730 miles (1,175 kilometers).

Armament consisted of two air-cooled Browning AN-M2 .50-caliber machine guns mounted in the cowlingabove the engine and synchronized to fire forward through the propeller arc, with 380 rounds per gun, and four Browning M2 .30-caliber aircraft machine guns, with two in each wing.

Curtiss-Wright produced 13,738 P-40s between 1939 and 1944. 131 of those were P-40B Warhawks.

A flight of six Curtiss P-40B Warhawks of the 44th Pursuit Squadron, 18th Pursuit Group, over the Territory of Hawaii, August 1941. (U.S. Air Force)
A flight of six Curtiss-Wright P-40B Warhawks of the 44th Pursuit Squadron, 18th Pursuit Group, over the island of Oahu, Territory of Hawaii, 9:00 a.m., 1 August 1941. (U.S. Air Force)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather