Tag Archives: Bell Aircraft Corporation

27 September 1956

Captain Milburn G. Apt, U.S. Air Force, with a Bell X-2. (U.S. Air Force)
Captain Milburn Grant Apt, United States Air Force, with a Bell X-2. (U. S. Air Force)

27 September 1956: Captain Milburn G. (“Mel”) Apt, United States Air Force, was an experimental test pilot assigned to the Air Force Flight Test Center at Edwards Air Force Base, California. After Frank Everest and Iven Kincheloe had made twelve powered flights in the Bell X-2 supersonic research aircraft, Mel Apt was the next test pilot to fly it.

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee on Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-II Skyrocket.

In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from stainless steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

Bell X-2 46-675 on its transportation dolly at Edwards Air Force Base, California, 1952. (NASA)
The second of two Bell X-2 supersonic research rocketplanes, 46-675, on its transportation dolly at Edwards Air Force Base, California, 1952. On 12 May 1953 this X-2 exploded during a captive test flight, killing Bell’s test pilot Jean L. “Skip” Ziegler. (NASA)

The X-2 was powered by a throttleable two-chamber Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons)

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50D-95-BO Superfortress bomber, serial number 48-096, was modified as the drop ship and redesignated EB-50D.

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

Bell X-2 46-674 after drop from Boeing EB-50D Superfortress 48-096. (U.S. Air Force)
Bell X-2 46-674 after drop from Boeing EB-50D Superfortress 48-096. (U.S. Air Force)

With Mel Apt in the cockpit on his first rocketplane flight, the B-50 carried the X-2 to 31,800 feet (9,693 meters). After it was dropped from the bomber, Apt ignited the rocket engine and began to accelerate. He passed Mach 1 at 44,000 feet (13,411 meters) and continued to climb. Apt flew an “extraordinarily precise profile” to reach 72,200 feet (22,007 meters) where he put the X-2 into a dive. The rocket engine burned 12.5 seconds longer than planned, and at 65,589 feet (19,992 meters) the X-2 reached Mach 3.196 (2,094 miles per hour, 3,377 kilometers per hour).

Milburn Apt was the first pilot to exceed Mach 3. He was The Fastest Man Alive.

Bell X-2 46-674 in flight over Southern California, 1955–56. Note the supersonic diamond-shaped shock waves in the rocket engine's exhaust. (Bell aircraft Corporation)
Bell X-2 46-674 in flight over Southern California, 1955–56. Note the supersonic diamond-shaped shock waves in the rocket engine’s exhaust. (Bell Aircraft Corporation)

It was known that the X-2 could be unstable in high speed maneuvers. The flight plan called for Apt to slow to Mach 2.4 before beginning a gradual turn back toward Rogers Dry Lake where he was to land, but he began the turn while still at Mach 3. Twenty seconds after engine burn out, the X-2 began to oscillate in all axes and departed controlled flight. His last radio transmission was, “There she goes.” ¹

Mel Apt was subjected to acceleration forces of ± 6 Gs. It is believed that he was momentarily unconscious. Out of control, the X-2 fell through 40,000 feet (12,192 meters) in an inverted spin. Apt initiated the escape capsule separation, in which the entire nose of the X-2 was released from the airframe. It pitched down violently and Mel Apt was knocked unconscious again. He regained consciousness a second time and tried to parachute from the escape capsule, but was still inside when it hit the desert floor at several hundred miles per hour. Mel Apt was killed instantly.

Since 1950, Milburn G. Apt was the thirteenth test pilot killed at Edwards Air Force Base.

Wreckage of the Bell X-2, 46-674. (U.S. Air Force)
Wreckage of the Bell X-2, 46-674, in the Kramer Hills, east of Edwards Air Force Base. (U.S. Air Force)
Wreckage of the Bell X-2, 46-674. (NASM 9A08208)

Milburn Grant Apt was born at Buffalo, Kansas, 8 April 1924. He was the third child of Oley Glen Apt, a farmer, and Ada Willoughby Apt.

“Mel” Apt enlisted as a private in the Air Corps Enlisted Reserve, United States Army, 9 November 1942. On 23 June 1943, Private Apt was appointed an Aviation Cadet. After completing flight training, Cadet Apt was commissioned a Second Lieutenant, Army of the United States (A.U.S.). He was promoted to First Lieutenant, A.U.S., 4 September 1945. Apt was released from active duty on 11 August 1946. On 10 October 1947, he was reclassified as a Second Lieutenant, Air Corps, United States Army, with date of rank 8 April 1945.

In February 1950, Lieutenant Apt, then stationed at Williams Air Force Base, Arizona, married Miss Faye Lorrie Baker of Phoenix. They would have two children.

Mel Apt earned a Bachelor of Science degree from the University of Kansas, Lawrence, Kansas, in 1951, and a second bachelor’s degree in aeronautical engineering from the Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio. He then attended the U.S. Air Force Experimental Test Pilot School at Edwards Air Force Base, California, graduating in September 1954. Apt was assigned to the Fighter Operations Branch, Air Force Flight Test Center, as a test pilot.

On 22 December 1954, Captain Apt was flying a chase plane during a test at Edwards. The test aircraft crash-landed on the dry lake and caught fire with its pilot trapped inside. Mel Apt, with his bare hands, rescued the other test pilot, saving his life. For this courageous act, he was awarded the Soldier’s Medal.

Captain Apt was posthumously awarded the Distinguished Flying Cross for his flight in the X-2. The medal was presented to his widow in a ceremony at Edwards in March 1957.

Captain Milburn Grant Apt, United States Air Force, was 32 years old at the time of his death. His remains were buried at the Buffalo Cemetery, Buffalo, Kansas.

Captain Iven Carl Kincheloe and Captain Milburn Grant Apt (seated in cockpit) with the Bell X-2 at Edwards Air Force Base, 1956. (Jet Pilot Overseas)

¹ Recommended: Coupling Dynamics in Aircraft: A Historical Perspective, by Richard E. Day, Dryden Flight Research Center, Edwards AFB, California NASA Special Publications 532, 1997.

© 2018, Bryan R. Swopes

17 September 1952

Bell Model 47D-1 N167B with modified landing gear and multiple fuel tanks. (Bell Helicopter)

17 September 1952: Bell Aircraft Corporation test pilot Elton John (“E.J.”) Smith flew a modified Bell Model 47D-1 helicopter, N167B (s/n 21), from Hurst, Texas, to Niagara Falls, New York, setting a Fédération Aéronautique Internationale (FAI) world record for distance without landing of 1,958.80 kilometers (1,217.14 miles).¹

During Smith’s flight, the flight controls’ hydraulic boost system failed. The helicopter’s radio also caught fire, forcing Smith to pull the wiring loose.

Elton John Smith, 1952. (FAI)

BELL HELICOPTER AT NIAGARA AFTER SETTING DISTANCE MARK

     A new world’s record for a nonstop distance flight by helicopter was established Wednesday when a Bell helicopter flew approximately 1,234 miles from the Bell Aircraft Corporation plant near Hurst to the front lawn of the main plant in Niagara Falls, N.Y.

     The pilot was Elton J. Smith, 31-year-old Bell test pilot, who lives with his wife and three small children at 4121 Vance Rd. in North Richland Hills.

     The helicopter was named Longhorn.

     Smith took off from the heliport at the Hurst plant at 4:41 a.m. and landed in Niagara Falls at 5:38 p.m. Fort Worth time. His elapsed time in the air 12 hours and 57 minutes.

     Lawrence D. Bell, president of the corporation, shouted congratulations to Smith while the helicopter’s rotors were still spinning.

     “Thank you, sir,” Smith replied.

     Later he reported that “I wasn’t very tired, it was a good flight. I ran into a little bad weather over the Ozarks, which forced me to detour somewhat from my proposed straight line flight from Fort Worth to Niagara Falls. After that I had pretty good weather and flew most of the route between 6,000 and 8,000 feet.

     “I started having radio trouble about one hour out of Fort Worth, which accounts for the fact that there was no contact with me during a great deal of the trip.

     “I had enough gas left to go another four hours—about 40 gallons,” he said. “I used only two quarts of oil on the trip.

     “I really got a kick out of doing it because a lot of us in the helicopter industry thought it could be done.

     “All in all, I was pretty fresh at the end of the trip—just a little bit stiff.”

     The flight, via Cleveland and Buffalo, broke the official helicopter distance record of 703.6 miles, established in a Sikorsky R05 helicopter on May 26, 1946, by Major F. T. Caschman, U.S. Air Force.

     That flight was from Cleveland to Logan, Mass, Other long distance flights on record, but not recognized by National Aeronautic Association, include:

     A flight of 920 miles from Iceland to Prestwick, Scotland, on July 31, 1952, by a Sikorsky H-19, flown by an Air Force pilot and co-pilot.

     A flight of 956 miles, 843 cross-country and 113 miles in the vicinity of Dayton, Ohio, on July 6, 1951, by Captain Wayne W. Eggert, U.S. Air Force.

     The helicopter  piloted by Smith was a Model 47D, built by Bell in December 1947. It is equipped with a 200-horsepower, six-cylinder Franklin aircooled engine. The ship previously had logged 387 hours and 50 minutes of flying time.

     Official observer for the NAA was E. J. Reeves of Dallas, who placed sealed barographs aboard the Longhorn before takeoff. The NAA also sealed the gas and oil tanks and an official was on hand to certify that the seals had not been broken when the helicopter.

     The helicopter took off with 187 gallons of gasoline and two gallons of oil. Estimated cost for the fuel on the flight was $59.30, a Bell release issued after the takeoff declared.

     Normal gross weight for a 47D model helicopter is 2,350 pounds, the release said. Gross for the record-breaking flight was 2,750 pounds.

     Smith carried with him several candy bars, a half-gallon of drinking water, and a beef sandwich.

Fort Worth Star-Telegram, 18 September 1952, Page 1, Columns 1–3

Bell Model 47D-1, N167B. (FAI)

Bell 47D-1 N167B (s/n 21) was originally built in December 1947 as a Model 47D. It was assigned to Bell’s Research and Development group for many years and went through numerous modifications. It had been used to develop the U.S. Army’s H-13B Sioux. For the record-setting flight, N167B was modified with seven fuel tanks, with two located in the passenger cabin, and five mounted behind the engine. After starting the engine, the electric starter motor was removed to save weight. At takeoff, it had a gross weight of 2,750 pounds (1,247 kilograms), 400 pounds (181 kilograms) over the certified maximum gross weight of the helicopter. It had flown 387 hours, 50 minutes, before the 17 September 1952 flight. Its FAA registration was cancelled 11 June 1970.

The Bell Model 47D-1 was the first three-place variant of the Model 47 series. Its Type Certificate was approved 29 March 1949. The initial price was $39,500.

The Bell Model 47D-1 had an overall length (with rotors turning) of 41 feet, 4¾ inches (12.618 meters). The main rotor diameter was 35 feet, 1½ inches (10.706 meters) in diameter. The length of the fuselage, from the front of the canopy to the trailing edge of the tail rotor disc, was 30 feet, 5 inches (9.271 meters). It was 9 feet, 4-5/16 inches (2.827 meters) high to the top of the main rotor mast.

The Bell 47D-1 main rotor was a two-bladed, under-slung, semi-rigid assembly that would be a characteristic of helicopters built by Bell for decades. The blades were constructed of laminated wood. An 8 foot, 4 inch (2.540 meters) stabilizer bar was placed below the hub and linked to the flight controls through hydraulic dampers. This made for a very stable aircraft. The main rotor turned counter-clockwise, as seen from above. (The advancing blade was on the right.) Its normal operating range was 322–360 r.p.m. (294–360 r.p.m. in autorotation).

The 47D-1 tail rotor was positioned on the right side of the tail boom in a tractor configuration. It had a diameter of 5 feet, 8-1/8 inches (1.730 meters) and rotated counter-clockwise as seen from the helicopter’s left. (The advancing blade was above the axis of rotation.) The tail rotor blades were also made of wood.

Elton J. Smith tests the modified Bell 47D-1. (Bell Helicopter)

Power was supplied by an air-cooled, normally-aspirated, 333.991-cubic-inch-displacement (5.473 liter) Franklin Engine Company 6V4-178-B32 vertically-opposed six cylinder engine with a compression ratio of 8.5:1. This engine was rated at 200 horsepower at 3,100 r.p.m. at Sea Level. Engine torque was sent through a centrifugal clutch to a transmission. The mast (the main rotor drive shaft) was driven through a two-stage planetary gear reduction system with a ratio of 9:1. The transmission also drove the tail rotor drive shaft, and through a vee-belt/pulley system, a large fan to provide cooling air for the engine.

The standard production Model 47D-1 had a maximum gross weight of 2,350 pounds (1,066 kilograms) and a fuel capacity of 29 U.S. gallons (110 liters). Its cruise speed was 78 miles per hour (126 kilometers per hour) and its service ceiling was 12,000 feet (3,658 meters).

Bell built 129 Model 47D-1 helicopters.

The Bell 47 was produced at the plant in New York, and later at Fort Worth, Texas. It was steadily improved and remained in production until 1974. In military service the Model 47 was designated H-13 Sioux, (Army and Air Force), HTL (Navy) and HUG (Coast Guard). The helicopter was also built under license by Agusta, Kawasaki and Westland. More than 7,000 were built worldwide and it is believed that about 10% of those remain in service.

Elton John Smith was born 4 September 1921 at Walton, New York. He was the second of three children of William H. Smith, a farmer, and Florence (“Flossie”) Delilah Knapp. He attended Parker High School in Clarence, New York.

Aviation Cadet Elton John Smith.

Elton Smith enlisted in the U.S. Army Air Forces as an aviation cadet, 11 December 1941. He completed flight training at the Lubbock Army Flying School, 20 March 1943 and commissioned as a second lieutenant. He was assigned to fly North American Aviation B-25 Mitchell medium bombers.

On 24 December 1943, Lieutenant Mitchell married Miss Rita Marie Follett at a private residence in San Angelo, Texas. They would have four children.

Smith was discharged from the U.S. Army Air Forces, 6 December 1945.

In 1947, E. J. Smith joined the Bell Aircraft Corporation at Buffalo, New York, as a test pilot.

E. J. Smith completes documentation for his world record flight.

On 20 October 1954, along with Bell’s Chief Pilot Floyd W. Carlson, Chief Experimental Test Pilot Smith made the first flight of the Bell XH-40, prototype of the legendary “Huey” military helicopter.

In 1973, Smith became the manager of flight and technical training for Bell Helicopter International’s Iranian training program. He was later the company’s head of international sales. He retired in 1984.

Elton John Smith died Thursday, 18 October 1990, in a hospital in Irvine, Texas. His remains ere buried at Greenwood Memorial Park, Fort Worth, Texas.

¹ FAI Record File Number 976

© 2023, Bryan R. Swopes

7 September 1956

Captain Iven Carl Kincheloe, Jr., United States Air Force
Captain Iven Carl Kincheloe, Jr., United States Air Force

7 September 1956: At Edwards Air Force Base, California, test pilot Captain Iven Carl Kincheloe, Jr., U.S. Air Force, flew the Bell X-2 rocketplane, serial number 46-674, to a speed of Mach 1.7 and an altitude of 126,200 feet (38,465 meters). He was the first pilot to fly above 100,000 feet (30,480 meters) and was called “The First of the Spacemen.”

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee for Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-2 Skyrocket. In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from Stainless Steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

The X-2 was powered by a throttleable Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust (11.12–66.72 kilonewtons) burning alcohol and liquid oxygen. The engine used two rocket chambers and had pneumatic, electrical and mechanical controls. The smaller chamber could produce a maximum 5,000 pounds of thrust, and the larger, 10,000 pounds (22.24 and 44.48 kilonewtons, respectively).

Professor Robert H. Goddard, “The Father of Modern Rocketry,” authorized Curtiss-Wright to use his patents, and his rocketry team went to work for the Curtiss-Wright Rocket Department. Royalties for use of the patents were paid to the Guggenheim Foundation and Clark University. Professor Goddard died before he could also make the move to Curtiss-Wright.

Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. A four-engine Boeing B-50A Superfortress bomber, serial number 46-011, was modified as the ”mothership.” A second Superfortress, B-50D-95-BO 48-096, was also modified to carry the X-2, and was redesignated EB-50D

The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

The Bell X-2 carried by Boeing EB-50D Superfortress 48-096. (U.S. Air Force)
A Bell X-2 carried by Boeing EB-50D Superfortress 48-096. (U.S. Air Force)

Iven Kincheloe was awarded the Mackay Trophy for this flight. His altitude record remained unbeaten until the X-15 Project.

Iven Kincheloe stands in front of the Bell X-2 and the entire support team at Edwards Air Force Base. The "mothership" is a highly-modified Boeing EB-50D Superfortress. Chase aircraft are a North American F-86 Sabre, Lockheed T-33 Shooting Star, North American F-100 Super Sabre. The rescue helicopter is a Sikorsky H-19.
Iven Kincheloe stands in front of the Bell X-2 and the entire support team at Edwards Air Force Base. The “mothership” is a highly-modified Boeing EB-50D Superfortress. Chase aircraft are a North American F-86 Sabre, Lockheed T-33 Shooting Star, North American F-100 Super Sabre. The rescue helicopter is a Sikorsky H-19. (NASA)

© 2017, Bryan R. Swopes

1 September 1946

Alvin M. “Tex” Johnston with the Thompson Trophy and the Allegheny-Ludlum Trophy, 1946 National Air Races. (San Diego Air and Space Museum Archives)

1 September 1946: Just one year after World War II came to an end, the National Air Races returned to Cleveland, Ohio. Grandstands were set up at the site of the Fisher Body Aircraft Plant No. 2, where assemblies for B-25 and B-29 bombers had been produced.

The Thompson Trophy Race was one of the most popular events because it was in view of the crowds. Sponsored by Thompson Products Company (the predecessor of TRW), it was a ten-lap pylon race flown at low altitude around a 30-mile (48.3 kilometers) course. There were two divisions. The R Division was for airplanes with reciprocating engines, and the J Division was for turbojet powered airplanes.

The National Air Races 4-pylon course, flown in 1946, 1947 and 1948. (airrace.com)

The race course was laid out as a parallelogram, with two 10-mile (16.1 kilometer) sides, and two 5-mile (8.0 kilometer) sides. There were two 75° turns and two 105° turns.

In addition to the Thompson Trophy, the race winner would receive $20,000 in prize money (about $342,400 in 2018 U.S. dollars). There were additional $2,000 prizes for the leader of each lap. A pilot who set a speed record during the race would win the Allegheny-Ludlum Trophy and $2,000.

Entrants for the 1946 race included many well-known air racers, test pilots and combat pilots. They included Cook Cleland, a U.S. Navy dive bomber pilot and test pilot; Woodrow W. (“Woody”) Edmondson, an aerobatic pilot; Howard Clifton (“Tick”) Lilly, a test pilot for the National Advisory Committee for Aeronautics (NACA, predecessor of NASA); Alvin Melvin (“Tex”) Johnston, an experimental test pilot with the Bell Aircraft Corporation; Anthony W. (“Tony”) LeVier, Chief Engineering Test Pilot for the Lockheed Aircraft Corporation, and an experienced pylon racer; Earl Hill Ortman, test pilot for Douglas Aircraft Company, and also an experienced racer; Howard L. Pemberton; Bruce Raymond; Robert Swanson; Charles (“Chuck”) Tucker, who had flown P-40s with the “Flying Tigers” in China, and an Army Air Corps test pilot; George Schwarz Welch, the Army Air Corps hero of Pearl Harbor, and test pilot for North American Aviation, Inc.; and Sylvester Joseph (“Steve”) Wittman, an aircraft designer and air racer.

Before the war, the races used specially-constructed racing aircraft and production civil aircraft. Following the war, the expense of developing a purpose-built, competitive air racer was no longer feasible, so surplus military fighters were used.

Of the twelve airplanes competing in the 1946 Thompson Race, there was one Bell Aircraft Corporation P-39Q Airacobra; four Bell P-63 Kingcobras; one Goodyear Aircraft Corporation FG-1D Corsair (a licensed variant of the Vought-Sikorsky F4U Corsair); a Lockheed Aircraft Corporation P-38L Lightning; and five North American Aviation, Inc., P-51D Mustangs.

Jack Woolams, Chief Test Pilot for Bell Aircraft Corporation, Experimental Test Pilot Tex Johnston, and Bell’s Chief Engineer, Robert Morris Stanley, had determined that a properly prepared Bell P-39 Airacobra could outrun and outfly a North American Aviation P-51 Mustang in the Thompson race.

A Bell Aircraft mechanic was sent to inspect surplus P-39s in storage at Ponca City, Oklahoma. He selected two nearly-new P-39Q Airacobras, each with less than 50 hours flight time. Woolams and Johnston paid $3,000 for the two fighters and they were flown back to the Bell plant at Buffalo, New York.

Jack Woolams’ Cobra I was a P-39Q-10-BE, U.S. Army Air Corps serial number 42-20733. Tex Johnston’s Cobra II was also a P-39Q-10-BE, 42-20869 (Bell serial number 26E-324).

The Bell P-39 Airacobra was a single-engine, single-place low-wing monoplane with retractable tricycle landing gear. An Allison V-1710 V-12 engine was mounted behind the cockpit in an unusual mid-engine configuration, with a drive shaft passing under the cockpit floor and turning the propeller through a remotely-mounted 1.8:1 gear reduction unit. This allowed the fighter to be armed with a large 37 mm autocannon which fired through the propeller hub.

Bell P-39Q-20-BE Airacobra 44-3887 at the National Museum of the United States Air Force)

The P-39Q was the final production version of the Airacobra. It was 30 feet, 2 inches (9.195 meters) long with a wingspan of 34 feet, 0 inches (10.363 meters) overall height of 12 feet, 5 inches (3.785 meters). The wings’ angle of incidence was +2° and there was 4° 0′ dihedral. The total wing area was 213 square feet (19.78 square meters). The horizontal stabilizer had +2° 15′ incidence and no dihedral.   The P-39Q had an empty weight of 5,692 pounds (2,704 kilograms), and maximum gross weight of 8,350 pounds (3,787 kilograms).

The production P-39Q was powered by a liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-E19 (V-1710-85) single overhead camshaft (SOHC) 60° V-12 engine with four valves per cylinder and a compression ratio of 6.65:1. The V-1710-85 had a continuous power rating of 810 horsepower at 2,600 r.p.m. at Sea Level, and 1,000 horsepower at 2,600 r.p.m. at 14,000 feet (4,267 meters). The engine’s takeoff power rating was 1,200 horsepower at 3,000 r.p.m., and its military power rating was 1,125 horsepower at 3,000 r.p.m., at 14,600 feet (4,450 meters). 100/130 octane aviation gasoline was required. The Allison drove a three-bladed Aeroproducts Division A632S-C1 hydraulically-operated constant-speed propeller with a diameter of 11 feet, 7 inches (3.531 meters) through a 2.23:1 gear reduction. The V-1710-85 was 16 feet, 2.00 inches (4.928 meters) long, 3 feet, 1.56 inches (0.954 meters) high, and 2 feet, 5.28 inches (0.744 meters) wide. It weighed 1,435 pounds (651 kilograms).

Cutaway illustration showing the unusual mid-engine arrangement of the Bell P-39 Airacobra. (Allison Division of General Motors)

The Bell P39Q-10-BE had a maximum speed of 385.0 mph (619.6 kilometers per hour) at 11,000 feet (3,353 meters). Its service ceiling was 34,300 feet (10,455 meters), absolute ceiling, 35,700 feet (10,881 meters), and its range was 1,075 miles (1,730 kilometers).

The P-39Q was armed with one Browning M4 37 mm autocannon with 30 rounds of explosive ammunition, and four Browning AN-M2 .50-caliber machine guns, with two in the nose with 200 rounds per gun, and one mounted under each wing in pods with 300 rounds per gun. The M4 cannon fired a 1.34 pound (608 grams) high-explosive shell at 2,000 feet per second (610 meters per second). The gun had a rate of fire of 150 rounds per minute.

The Bell Aircraft Corporation built 9,558 P-39s. 4,905 of these were P-39Qs. 705 were the P-39Q-10-BE variant.

Jack Woolams (left) and Tex Johnston pose with their air racers, Cobra I and Cobra II, at the Bell Aircraft Corporation plant, August 1946. (airrace,com)

Bell Aircraft provided hangar space for the two Airacobras, and assigned an engineer and five mechanics to the project. Cobra I was painted red with black accents. It was issued Civil Aeronautics Administration experimental registration NX92847. Its race number, 75, was painted on the wings and fuselage. Cobra II was painted yellow with black trim, and registered NX92848. Its race number was 84.

Both airplanes were stripped of armament, armor and self-sealing fuel tanks. The landing gear was modified to reduce its retraction time from 22 seconds to just 4 seconds. The standard fabric-covered ailerons, rudder and elevators were covered with sheet aluminum. Adjustable trim tabs were deleted. Gyroscopic instruments were removed. The pitot tube was moved from the left wing tip and placed on a long boom projecting through the propeller hub. Thin, light-weight Goodyear fuel bladders were installed, not only reducing weight, but increasing the Airacobras’ fuel capacity by 10%. The roll-down side windows of the P-39 were replaced by fixed Plexiglas panels.

Bell P-39Q-10-BE NX92848, Cobra II, Tex Johnston’s Thompson Trophy Race winner. (San Diego Air and Space Museum Archives)

Engineers at Allison recommended that a modified Allison XV-1710-135 (E31) engine be used for the two racers. The modified engines used an increased-diameter supercharger impeller and undersized pistons to reduce cylinder wall friction. Using 140-octane Mobil aviation gasoline, they produced 2,000 horsepower at 3,200 r.p.m. with 86 inches (291 kilopascals) of manifold pressure. The high power output required that the engine be provided with a continuous injection of a precisely-measured water and ethyl/methyl alcohol solution when operating above 57 inches (193 kilopascals) of manifold pressure. An 85 gallon (322 liter) tank for the injection mixture was placed in the nose.

Tex Johnston’s Thompson Trophy-winning Bell P39Q Airacobra, “Cobra II.” (San Diego Air and Space Museum Archives)

The increased power of the modified XV-1710-135 required that the P-39’s standard three-bladed propeller be replaced by a four-bladed unit from the P-63 Kingcobra. This was an Aeroproducts A624S constant-speed propeller with hollow steel blades. Its diameter was 11 feet, 0 inches (3.531 meters). The propeller gear reduction ratio remained the same, at 2.23:1, as did the remote gear box, at 1.8:1.

Allison V-1710-E19 (V-1710-85) with extension drive shaft and remote propeller drive gear unit. (Allison Division of General Motors)

The V-1710-E31 was longer and heavier than the -E19 because of an outboard reduction gear box. It was 17 feet, 4.00 inches (5.283 meters) long, 3 feet, 0.75 inches (0.933 meters) high, with the same 2 foot, 5.28 inch (0.744 meters) width. It weighed 1,500 pounds (680 kilograms).

Jack Woolams’ P-39 Cobra I leads a P-51D Mustang around a pylon turn during qualifying, August 1946. (LIFE Magazine via Jet Pilot Overseas)

When race qualifications were held, Tex Johnston was placed first with his yellow Cobra II. His average speed was 409.091 mph (658.368 kilometers per hour). George Welch was second with his P-51D, number 37. Jack Woolams and Cobra I were third.

Jack Valentine Woolams, Chief Experimental Test Pilot, Bell Aircraft Corporation. (John Trudell/Ancestry)

Jack Valentine Woolams was killed on 30 August, two days before the race, when his Cobra I crashed into Lake Ontario while returning to the Bell plant for an engine change. The Airacobra’s windshield may have collapsed at over 400 miles per hour (644 kilometers per hour).

The Thompson Trophy Race was held on Sunday, 1 September 1946. Tex Johnston, leading the field, took off and retracted his landing gear, climbing to 300 feet (91 meters). As he approached the first turn, he rolled Cobra II into a 4G turn (75.5° angle of bank) and dove to 60 feet (18 meters). As he made the turn, he was already pulling far ahead of the other racers.

George Welch dropped out when his Merlin engine began overheating. Tony LeVier’s P-38 Lightning, race number 3, held on to second place. By the ninth lap, Tex Johnston was passing the airplanes at the back of the field.

On the final turn, Johnston rolled into a 90° bank, and at only 50 feet (15 meters) above the ground, passed inside a Bell P-63 Kingcobra at 430 miles per hour (692 kilometers per hour) to win the race. His average speed for the ten laps was 373.908 mph (601.746 kilometers per hour).

After winning the 1946 Thompson Trophy Race, test pilot Tex Johnston kisses his wife, DeLores. (LIFE Magazine via Jet Pilot Overseas.)
Tex Johnston with the Thompson Trophy, 1946 National Air Races, Cleveland, Ohio. (LIFE Magazine)

Tony LeVier and his Lightning were in second place at 370.193 mph (595.768 kilometers per hour). Finishers 3, 4 and 5 were P-51D Mustangs. Number 6 was the lone FG-1D Corsair, followed by another P-51D. Proving that Woolams, Johnston and Stanley knew their airplane, the final three finishers were the three remaining P-63 Kingcobras.

An oil-streaked, race-winning Bell P-39Q Airacobra, NX92848, Tex Johnston’s Cobra II. The modified Allison engine’s undersized pistons allowed excessive blow-by. (San Diego Air and Space Museum Archives)

Cobra II competed in the 1947 Thompson Trophy Race. Flown by Bell Aircraft Corp. test pilot Gerald A. (“Jay”) Demming, and carrying the race number 11, it finished in third place behind two Goodyear F2G-1 Super Corsairs. Demming’s average speed was 367.625 miles per hour (591.635 kilometers per hour).

In the 1948 Thompson race, Cobra II, still carrying the number 11, was flown by Charles Brown. For this year, the race was twenty laps of a shorter, 15 mile (24.1 kilometer) course. Cobra II had qualified in first place with an average speed of 418.300 miles per hour (673.189 kilometers per hour). Brown led the race for 18 laps. His highest speed for a single lap was 413.907 miles per hour (666.119 kilometers per hour). He had to land, though, when the modified Allison engine began losing power. The race was won by a P-51D Mustang.

Bell P-39Q-10-BE Airacobra NX92849
Cobra II at the 1947 National Air Races, with race number 11. It was flown in the Thompson Trophy race by Bell test pilot Jay Demming, who placed third. (SDASM)

The history of Cobra II is elusive until it was purchased by Ed Maloney in 1960. It was sold to Michael D. Carroll in 1967. Carroll was the owner of Signal Trucking Co., and lived in Palos Verdes, California. The Airacobra was now registered N9824. Carroll had the airplane’s wings shortened by 4 feet per side (1.2 meters), and renamed it Cobra III.

On 10 August 1968, Carroll and Cobra III took of from Long Beach Airport (LGB), enroute to Orange County Airport (SNA), at nearby Santa Ana, California. At 11:15 a.m., the racer crashed at the Seal Beach Naval Weapons Station. Carroll bailed out, but his parachute did not open and he was killed. His body was located 125 feet (38 meters) from the wreckage. There was no post-crash fire. Lieutenant Commander Jack Kellicott, U.S. Navy, said that the airplane had run out of fuel.

Tex Johnston left Bell Aircraft Corporation and moved on to Boeing in Seattle, initially testing the swept-wing XB-47 Stratojet. He made the first flights of the YB-52 and XB-52 Stratofortress; the Model 367-80 (the “Dash 80”), which he notoriously rolled over Lake Washington, 6 August 1955; the KC-135A Stratotanker; and the Model 707 airliner. As Boeing’s Chief of Flight Test, Tex Johnston set the standard by which modern flight testing is carried out.

Alvin Melvin (“Tex”) Johnston, Chief of Flight Test. (The Boeing Company)

Highly recommended: Tex Johnston, Jet-Age Test Pilot, by A.M. “Tex” Johnston with Charles Barton, Smithsonian Books, Washington, D.C., 1991

© 2018, Bryan R. Swopes

22 August 1953

Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a David Clark Co. capstan-type partial pressure suit with a K-1 helmet. This scene was portrayed by William Holden in Toward The Unknown". (LIFE Magazine via jet Pilot Overseas)
Lieutenant Colonel Frank K. Everest, USAF, rides in the nose of a Boeing EB-50D Superfortress mothership before a rocketplane flight. He is wearing a T-1 capstan-type partial-pressure suit with a K-1 helmet. This scene was portrayed by William Holden in “Toward The Unknown”. (LIFE Magazine via Jet Pilot Overseas)

22 August 1953: After one successful glide flight with Bell Aircraft Corporation test pilot Skip Ziegler, the X-1D rocketplane, serial number 48-1386, was scheduled for its first powered flight with the Air Force project officer, Lieutenant Colonel Frank Kendall (“Pete”) Everest.

Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)
Bell X-1D 48-1386. (Bell Aircraft Corp./U.S. Air Force)

The Bell X-1D was one of four second-generation X-1 rocketplanes, each designed and built to investigate a different area of supersonic flight. The X-1D was instrumented for aerodynamic heating research.

A Boeing EB-50D Superfortress carries the Bell X-1D. (Edwards Flight Test.com)
The Boeing EB-50A Superfortress carries the Bell X-1D. The band of white frost around the rocketplane’s fuselage shows the location of the liquid oxygen tank. (EdwardsFlightTest.com)
A Boeing EB-50D Superfortress carries the Bell X-1D at high altitude. (U.S. Air Force)
The Boeing EB-50A Superfortress carries a Bell X-1 at high altitude. (U.S. Air Force)

After being carried to altitude by the Boeing EB-50A Superfortress mothership, Pete Everest saw that the rocketplane’s nitrogen pressure was dropping. (Pressurized nitrogen was used to push the ethyl alcohol/liquid oxygen propellant to the Reaction Motors XLR11-RM-5 engine.) With insufficient pressure, the X-1D’s flight had to be cancelled. Everest tried to jettison the fuel so that a landing could be made safely. There was an internal explosion.

Fearing that a larger explosion or fire would jeopardize the bomber and its crew, Everest abandoned the X-1D, climbing up into the bomber. The X-1 was then dropped. It crashed onto the desert floor and exploded.

Wreckage of Bell X-1D 48-1386. (U.S. Air Force)
Wreckage of Bell X-1D 48-1386. (U.S. Air Force)

At first it was assumed that vapors from a fuel leak had exploded from contact with an electrical source inside the rocketplane. There had been three similar explosions which resulted in the destruction of the X-1A, X-1-3 and the number two Bell X-2. That explosion, which occurred while the X-2 was on a captive test flight near the Bell Aircraft Corporation Factory, Buffalo, New York, 12 May 1953, killed test pilot Skip Ziegler and flight test engineer Frank Wolko aboard the B-29 mothership.

Investigators discovered that leather gaskets which were used in the rocketplanes’ fuel systems had been treated with tricresyl phospate (TCP). When this was exposed to liquid oxygen, an explosion could result. The leather gaskets were removed from the other rocketplanes and the explosions stopped.

Colonel Everest’s close call was dramatized in the 1956 Toluca Productions motion picture, “Toward The Unknown,” which starred Academy Award-winning actor William Holden as “Major Lincoln Bond,” a fighter pilot, test pilot and former prisoner of war, all of which could describe Pete Everest.

Major Frank K. Everest, U.S. Air Force gives some technical advice to William Holden ("Major Lincoln Bond") with Bell X-2 46-674, on the set of "Toward The Unknown", 1956.
Major Frank K. Everest, U.S. Air Force, gives some technical advice to William Holden (“Major Lincoln Bond”) with Bell X-2 46-674, on the set of “Toward The Unknown”, 1956. (bellx-2.com)

Frank Kendall (“Pete”) Everest, Jr., was born 10 August 1920, at Fairmont, Marion County, West Virginia. He was the first of two children of Frank Kendall Everest, an electrician, and Phyllis Gail Walker Everest. He attended Fairmont Senior High School, Fairmont, West Virginia, graduating in 1938, and then Fairmont State Teachers College where he was a member of the Tau Beta Iota (ΤΒΙ) fraternity. Everest also studied engineering at the University of West Virginia in Morgantown.

Pete Everest enlisted as an aviation cadet in the United States Army Air Corps at Fort Hayes, Columbus, Ohio, 7 November 1941, shortly before the United States entered World War II. His enlistment records indicate that he was 5 feet, 7 inches (1.70 meters) tall and weighed 132 pounds (60 kilograms). Everest graduated from pilot training and was commissioned as a second lieutenant, Air Reserve, 3 July 1942.

Lieutenant Everest married Miss Avis June Mason in Marion County, West Virginia, 8 July 1942. They would have three children, Frank, Vicky and Cindy.

Lieutenant Everest was appointed first lieutenant, Army of the United States (A.U.S.), 11 November 1942. He was assigned as a Curtiss-Wright P-40 Warhawk fighter pilot. Everest flew 94 combat missions with the 314th Fighter Squadron, 324th Fighter Group, in North Africa, Sicily and Italy. He was credited with shooting down two Luftwaffe Junkers Ju-52 transports, 18 April 1943, and damaging a third. Everest was promoted to the rank of captain, A.U.S., 17 August 1943.

Pete Everest with his Curtiss-Wright P-40 Warhawk, North Africa, 1943. (West Virginia State Archives)

In 1944, Captain Everest was returned to the United States to serve as a flight instructor. He requested a return to combat and was then sent to the China-Burma-India theater of operations, commanding the 17th Provisional Fighter Squadron at Chenkiang (Zhenjiang), China, where he flew 67 missions in the North American P-51 Mustang, and shot down four Japanese airplanes. He was himself shot down by ground fire in May 1945. Everest was captured by the Japanese and suffered torture and inhumane conditions before being freed at the end of the war. He was promoted to the rank of major, A.U.S., 1 July 1945. He was returned to the control of the United States military 3 October 1945.

After the war, Major Everest was assigned as a test pilot at Wright-Patterson Air Force Base, Ohio, before going west to the Air Force Flight Test Center at Edwards Air Force Base, California.

Everest’s permanent rank was advanced from second lieutenant, Air Reserve, to first lieutenant, Air Corps, 19 June 1947, with date of rank retroactive to 3 July 1945.

At Edwards, Pete Everest was involved in nearly every flight test program, flying the F-88, F-92, F-100 (he flew the YF-100A prototype to an FAI world speed record, 29 October 1953 ¹), F-101, F-102, F-104 and F-105 fighters, the XB-51, YB-52, B-57 and B-66 bombers. He also flew the pure research aircraft, the “X planes:” the X-1, X-1B, X-2, X-3, X-4 and X-5. Pete Everest flew the Bell X-1B to Mach 2.3, and he set an unofficial world speed record with the Bell X-2 at Mach 2.87 (1,957 miles per hour, 3,150 kilometers per hour), which earned him the title, “The Fastest Man Alive.” He was the pilot on thirteen of the twenty X-2 flights.

Major Frank Kendall Everest, Jr., U.S. Air Force, with the Bell X-2 supersonic research rocketplane, on Rogers Dry Lake at Edwards AFB, California, 1955. (U.S. Air Force)

Frank Everest returned to operational assignments in March 1957, commanding the 461st Fighter Squadron, 36th Fighter Wing, equipped with the F-100 Super Sabre, at Hahn Air Base, Germany. Later, Colonel Everest commanded the 4453rd and 4520th Combat Crew Training Wings, and was assigned staff positions at the Pentagon. On 20 November 1963, Colonel Everest, commanding the 4453rd Combat Crew Training Squadron, flew one of the first two operational McDonnell F-4C Phantom II fighters from the factory in St. Louis to MacDill Air Force Base, Florida.

On 1 November 1965, Pete Everest was promoted to the rank of brigadier general. Between 1966 and 1972, General Everest flew 32 combat missions over Southeast Asia.

He served as commander of the Aerospace Rescue and Recovery Service from 1970 to 1973. He retired from the Air Force 1 March 1973 after 33 years of service. Pete Everest later worked as a test pilot for Sikorsky Aircraft.

During his military career, General Everest was awarded the Air Force Distinguished Service Medal; Legion of Merit with two oak leaf clusters (three awards); Distinguished Flying Cross with two oak leaf clusters (three awards); Purple Heart; Air Medal with one silver and two bronze oak leaf clusters (seven awards); Air Force Commendation Medal with one oak leaf cluster (two awards); Presidential Unit Citation with two bronze oak leaf clusters (three awards); Air Force Gallant Unit Citation; Prisoner of War Medal; American Campaign Medal; European-African-Middle Eastern Campaign medal with four bronze stars; Asiatic-Pacific campaign Medal with two bronze stars; World War II Victory Medal; national Defense Service Medal; Armed Forces Expeditionary Medal; Vietnam Service Medal; Air Force Longevity Service Award with one silver and two bronze oak leaf clusters (eight awards); Air Force Small Arms Expert Marksmanship Ribbon; and the Republic of Vietnam Campaign Medal with 1960– device. General Everest was rated as a Command Pilot, and a Basic Parachutist.

Brigadier General Frank Kendall Everest, Jr., United States Air Force, died at Tucson, Arizona, 1 October 2004, at the age of 84 years.

Bell X-2 46-674 is airdropped from the EB-50D Superfortress, 48-096. U.S. Air Force)
Brigadier General Frank Kendall Everest, Jr., United States Air Force

¹ FAI Record File Number 8868: World Record for Speed Over a Straight 15/25 Kilometer Course, 1,215.298 kilometers per hour (755.151 miles per hour)

© 2017, Bryan R. Swopes