Tag Archives: Flight Test

5 January 1956

Piasecki YH-16A-PH Transporter 50-1270 hovers in ground effect.
Piasecki YH-16A-PH Transporter 50-1270 hovers in ground effect. (Piasecki Aircraft Corporation)

5 January 1956: The prototype Piasecki Helicopter Company YH-16A-PH Transporter twin-turboshaft, tandem-rotor helicopter, serial number 50-1270, was returning to Philadelphia from a test flight, when, at approximately 3:55 p.m., the aft rotor desynchronized, collided with the forward rotor and the aircraft broke up in flight. It crashed at the Mattson Farm on Oldman’s Creek Road, near Swedesboro, New Jersey, and was completely destroyed.

Test pilots Harold W. Peterson and George Callahan were killed.

It was determined that a bearing associated with an internal coaxial shaft supporting test data equipment had seized, causing the rotor shaft to fail.

Harold W. Peterson (left) and George Callahan, with the prototype Piasecki YH-16A Turbo Transporter, 50-1270. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Harold W. Peterson (left) and George Callahan, with the prototype Piasecki YH-16A Turbo Transporter, 50-1270. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

At the time, the YH-16 was the largest helicopter in the world. The United States Air Force intended it as a very-long-range rescue helicopter, while the U.S. Army expected it to serve as a heavy lift cargo and troop transport.

The YH-16A had a fuselage length of 78 feet (23.774 meters), and both main rotors were 82 feet (24.994 meters) in diameter. With rotors turning, the overall length was 134 feet (40.843 meters). Their operating speed was 125 r.p.m. Overall height of the helicopter was 25 feet (7.62 meters). The helicopter’s empty weight was 22,506 pounds (10,209 kilograms) and the gross weight was 33,577 pounds (15,230 kilograms).

YH-16 50-1269 was powered by two 2,181.2-cubic-inch-displacement (35.74 liter) air-cooled, supercharged Pratt & Whitney Twin Wasp E2 (R-2180-11) two-row, fourteen-cylinder radial engines with a Normal Power Rating of 1,300 horsepower at 2,600 r.p.m. at 8,000 feet (2,438 meters), and 1,650 horsepower at 2,600 r.p.m., for Takeoff.

Piasecki YH-16A 50-1270 during a test fight.

The second YH-16A, 50-1270, was modified while under construction and was powered by two Allison Division YT38-A-10 turboshaft engines which produced 1,800 shaft horsepower, each. This made the YH-16A the world’s first twin-engine turbine-powered helicopter.

The Piasecki YH-16A Transporter was the world's largest helicopter in 1956. (Piasecki Aircraft Corporation)
The Piasecki YH-16A Transporter was the world’s largest helicopter in 1956. (Piasecki Aircraft Corporation)

The cruise speed of the YH-16A was 146 miles per hour (235 kilometers per hour). In July 1955, Peterson and Callahan had flown 50-1270 to an unofficial record speed of 165.8 miles per hour (266.83 kilometers per hour). The service ceiling was 19,100 feet (5,822 meters) and the maximum range for a rescue mission was planned at 1,432 miles (2,305 kilometers).

After the accident, the H-16 project was cancelled.

Prototype Piasecki YH-16A Transporter 50-1270, hovering in ground effect at Philadelphia Airport, 1955. (Piasecki Aircraft Corporation)
Prototype Piasecki YH-16A Transporter 50-1270, hovering in ground effect at Philadelphia Airport, 1955. (Piasecki Aircraft Corporation)

© 2017, Bryan R. Swopes

22 December 1954

Captain Richard James Harer, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
Captain Richard James Harer, United States Air Force. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)

22 December 1954: At Edwards Air Force Base in the high desert of southern California, test pilot Captain Richard James Harer was flying a Lockheed F-94C-1-LO Starfire, serial number 50-962.¹ Harer was accompanied by fellow test pilot Captain Milburn G. Apt in a chase plane.

Lockheed F-94C-1-LO Starfire 50-966, the same type airplane flown by Captain Richard Harer, 22 December 1954, is accompanied by Lockheed F-80C-1-LO Shooting Star 47-176 chase plane. (Lockheed)
Lockheed F-94C-1-LO Starfire 50-966, an all-weather interceptor of the same type flown by Captain Richard J. Harer, 22 December 1954. The Starfire is accompanied by a Lockheed F-80C-1-LO Shooting Star chase plane, 47-176. (Lockheed Martin)

The Lockheed F-94 was the first U.S. production fighter aircraft to be equipped with a drag chute to provide aerodynamic braking on landing. (Drag chutes had been in use on larger aircraft since the 1930s.) There was speculation that the sudden deceleration provided by a drag chute might be useful during air-to-air combat.

Captain Harer’s test flight was to determine what would happen when the drag chute opened while the airplane was traveling at 600 miles per hour (96 kilometers per hour).

In this scene from the motion picture "Toward The Unknown" (Toluca Productions, 1956) which starred William Holden and Lloyd Nolan in a story about test pilots at Edwards Air Force Base, a Lockheed F-94C Starfire has released a drag chute in flight, simulating Captain Richard Harer's test flight of 22, December 1954.
In this scene from the motion picture “Toward The Unknown” (Toluca Productions, 1956), which starred William Holden and Lloyd Nolan in a story about test pilots at Edwards Air Force Base, a Lockheed F-94C Starfire has released a drag chute in flight, simulating Captain Richard J. Harer’s test flight of 22 December 1954. (Toluca Productions)

 LIFE Magazine described the test in the following excerpt:

LIFE Magazine, 18 June 1956. . . A captain named Richard J. Harer was assigned to make the test in an F-94C, capable of flying 600 miles an hour. The plane was equipped with a manual release, so Harer could get rid of the parachute after the test. In the event that the manual release failed, Harer could get rid of the parachute by detonating a small explosive charge which was wired to the rope that secured the parachute to the plane. If both of these devices failed, Harer could still get rid of the parachute by going into a dive and maneuvering the parachute into the blast of flame from his afterburner. In sum, a thoughtful arrangement of affairs. Harer got into his plane and took it up to 20,000 feet, closely followed by a chase aircraft flown by another captain named Milburn Apt. Harer opened the parachute, began to tumble crazily across the sky and then—as far as anyone knows—must have tried the manual release. It failed. Then, because he was a cool, skillful pilot, Harer must have kept his head and tried the explosive charge, although no one is sure what he did. In any case, the charge did not explode. By this time Harer was plummeting out of control toward the dry lake bed at perhaps 500 miles an hour, with Captain Apt flying right beside him shouting advice over the radio. Harer’s plane continued down, wallowing, gyrating, the deadly parachute never quite getting into the flame of the afterburner. Harer crashed. His plane burst into flames.

Lockheed F-94C-1-LO Starfire 50-1041 deploys its drogue chute on touchdown. (U.S. Air Force)
Lockheed F-94C-1-LO Starfire 50-1041 deploys its drag chute on touchdown. (U.S. Air Force)

Captain Apt landed on the lake bed at almost the instant of the crash. The two planes, one burning, one under control, skidded along beside each other. As soon as he came to a halt, Apt leaped out of his plane and ran over to Harer’s. “It was nothing but fire,” Apt remembers. “The only part of the plane I could see sticking out of the flames was the tip of the tail.”

Apt dashed around to the other side of Harer’s plane. Strangely, this side was not burning. Apt was able to climb up onto the plane and look through the Plexiglas canopy into the cockpit. It was filled with smoke, but he could see Harer inside, feebly, faintly moving his head. Apt grabbed the canopy release, a device on the outside of the plane designed for just such and emergency. It failed.

Lockheed F-94C-1-LO Starfire 50-1034 with its drogue chute deployed for aerodynamic braking on landing. (U.S. Air Force)
Lockheed F-94C-1-LO Starfire 50-1034 with its drag chute deployed for aerodynamic braking on landing. (U.S. Air Force)

The dry lake bed has absolutely nothing on its surface except the fine-grained sand of which it is composed. No sticks, no stones, nothing that Apt might have picked up to smash the canopy. He tried to pry it off with his bare hands, an effort that, had it not been for the circumstances, would have been ludicrous. He smashed it with his fists and succeeded only in injuring himself. Meanwhile he could see Harer inside, the fire beginning to get to him now.

Captain Richard J. Harer's Lockheed F-94C-1-LO Starfire, 50-962. The airplane has an air data boom mounted on teh nose for flight testing, and carries jettisonable fuel tanks under its wings. (U.S. Air Force photograph via Million Monkey Theatre)
Captain Richard J. Harer’s Lockheed F-94C-1-LO Starfire, 50-962. The airplane has an air data boom mounted on the nose for flight testing, and carries jettisonable fuel tanks under its wings. (U.S. Air Force photograph via Million Monkey Theater)

As Captain Apt smashed his fists on the canopy, a single jeep raced across the lake bed toward the plane at 70 miles an hour. Reaching the plane, the driver leaped out and ran over to it, carrying the only useful piece of equipment he had: a five-pound brass fire extinguisher, the size of a rolling pin. He could as well have tried to put out the fire by spitting on it. Apt and the jeep driver shouted contradictory instructions at each other above the growing roar of the fire. The jeep driver emptied his extinguisher on the forward part of the plane, then handed the empty container to Apt. Apt raised it above his head and smashed it down on the canopy. It bounced off. He pounded the canopy again and again, as hard as he could, and each time the extinguisher bounced off. “It was like hitting a big spring,” he says forlornly. “I couldn’t break it.”

Meanwhile, 9,950 men on the base quietly pursued their jobs, unaware of the accident. The obstetrician said, “Come back Thursday, Mrs. Smith,” Robert Hawn worked on his YAPS, and Smith, Douglas S., changed a tire. The only immediate spectators, aside from Apt and the jeep driver, were the Joshua trees growing all along the edge of the lake bed, very old and mournful.

By this time Captain Harer’s flesh was on fire. The jeep driver dashed back to his vehicle and returned with a five-gallon gasoline can. “My God.” Apt thought. “No, no,” the jeep driver cried, “it’s full of water. It’s all right.”

Apt hefted the can, which weighed nearly 50 pounds. He raised it high in the air and smashed it down. The canopy cracked. Apt hit it again, opening a hole in it, letting out the smoke inside. In a few seconds he had broken a large jagged opening through which Harer could be pulled out. “It was a tough job,” Apt says. “Harer was a very tall man.” Was a tall man. Not is, but was.

“He’s not tall now,” Apt says. “Both his feet were burned off.” Captain Harer lived. Today, he gets around very well on his artificial feet. He has been promoted to major and will soon be honorably retired from the Air Force with a pension. He has no memory whatever of the accident. He recalls flying at 20,000 feet and popping open the parachute, and his next memory is of awakening in a hospital two weeks later. . . .

Excerpted from “10,000 Men to a Plane,” LIFE Magazine, 18 June 1956.

Captain Milburn Grant Apt, United States Air Force, with a Lockheed T-33A Shooting Star. (LIFE Magazine)
Captain Milburn Grant Apt, United States Air Force, with a Lockheed T-33A Shooting Star at Edwards Air Force Base, 1956. (LIFE Magazine via Jet Pilot Overseas)
Soldier's Medal
The Soldier’s Medal

For his heroism in the face of great danger, Captain Mel Apt was awarded the Soldier’s Medal, the highest award for valor in a non-combat mission for Army and Air Force personnel.  The regulation establishing the award states, “The performance must have involved personal hazard or danger and the voluntary risk of life under conditions not involving conflict with an armed enemy. Awards will not be made solely on the basis of having saved a life.”

Mel Apt would continue as a test pilot at Edwards Air Force Base, and on 26 September 1956, he would be the first pilot to exceed Mach 3 when he flew the Bell X-2 rocketplane to Mach 3.196 (2,094 miles per hour/3,377 kilometers per hour) at 65,589 feet (19,992 meters). Just seconds later, the X-2 began uncontrolled oscillations and came apart. Mel Apt was unable to escape from the cockpit and was killed when the X-2 hit the desert floor. He was the thirteenth test pilot to be killed at Edwards since 1950.

Richard James Harer was born at Painesville, Ohio, 8 October 1924. He was the son of Otto H. Harer, a foundry manager, and Edith Mynchenberg Harer. He had a younger sister, Marilyn.

Harer graduated from Harvey High School in Painesville in 1941. He was a member of the debate club and the Hi-Y club. (Harer’s father was president of the Painesville Board of Education.)

In 1942, Harer was a student at the University of Ohio. A member of the Class of 1945, he studied engineering and was a member of the Phi Eta Sigma (ΦΗΣ) fraternity.

World War II interrupted Harer’s education. On 4 December 1942, he enlisted as a private in the Air Corps Enlisted Reserve Corps. On 2 March 1943, Private Harer was selected as an Aviation Cadet and assigned to flight training. He was commissioned as a second lieutenant, Army of the United States (A.U.S.), 7 January 1944. On 6 November 1944, Harer was promoted to first lieutenant, A.U.S. On 25 September 1945, First Lieutenant Harer was transferred to the Air Corps Reserve. In 1947, the United States Air Force was established as a separate military service. Richard Harer was appointed a second lieutenant, U. S. Air Force, with his date of rank retroactive to 8 October 1945.

During World War II, Lieutenant Harer flew 31 combat missions in the European Theater of Operations. He was awarded the Distinguished Flying Cross, and the Air Medal with three oak leaf clusters.

Following the war, Richard Harer returned to his studies, now at the University of Toledo, Toledo, Ohio. He was a member of the Sigma Beta Phi (ΣΒΦ) fraternity, the American Society of Mechanical Engineers, and the Engine Club. He  earned a master’s degree in mechanical engineering from the California Institute of Technology, and a second master’s degree in systems management from the University of Southern California.

On 21 January 1948, Lieutenant Harer married Miss Barbara Alice Heesen at Lucas, Ohio. They would have four children.

After graduating from the U.S. Air Force Test Pilot School, Captain Harer was assigned as a test pilot at the Air Force Flight Test Center, Edwards Air Force Base, California. He conducted performance testing on the Republic F-84F Thunderstreak. Harer flew an F-84F in the Bendix Trophy Race, 4 September 1954. He made one flight in the Bell X-1B rocketplane, 4 November 1954.

1954 Bendix Trophy Race. Captain Richard J. Harer is second from left. (San Bernardino Sun. 4 September 1954, Page 1, Columns 5–7)

Richard James Harer died 20 November 2019 at the age of 95 years.

¹ Several sources list the U.S. Air Force serial number of the F-94C flown by Captain Harer as “50-692,” however that serial number is actually assigned to a Boeing C-97C-35-BO Stratofreighter four-engine medical transport. It is apparent that the numbers have been transposed.

© 2018, Bryan R. Swopes

17 December 1903, 10:35 a.m.

Orville Wright at the controls of the Flyer, just airborne on its first flight at Kill Devil Hills, North Carolina, 17 December 1903. Wilbur Wright is running along to stabilize the wing. This photograph was taken by John Thomas Daniels, Jr., using the Wright Brothers’ Gundlach Optical Company Korona-V camera. (Library of Congress Prints and Photographs Division)

17 December 1903, 10:35 a.m.: Orville and Wilbur Wright, two brothers from Dayton, Ohio, had been working on the development of a machine capable of flight since 1899. They started with kites and gliders before moving on to powered aircraft. At the Kill Devil Hills near Kitty Hawk, North Carolina, on the eastern shoreline of the United States, they made the first successful flight of a manned, powered, controllable airplane.

Orville was at the controls of the Flyer while Wilbur ran along side, steadying the right wing. Against a 27 miles per hour (12 meters per second) headwind, the airplane flew 120 feet (36.6 meters) in 12 seconds.

Three more flights were made that day, with the brothers alternating as pilot. Wilbur made the last flight, covering 852 feet (263.7 meters) in 59 seconds. The Flyer was slightly damaged on landing but before it could be repaired for an intended flight four miles back to Kitty Hawk, a gust of wind overturned the airplane and caused more extensive damage. It never flew again.

Flyer after fourth (final) flight. (Wright Brothers Aeroplane Company)

The 1903 Wright Flyer is a canard biplane, with elevators to the front and rudders at the rear. The flight controls twisted, or “warped,” the wings to cause a change in direction. The pilot lay prone in the middle of the lower wing, on a sliding “cradle.” He slid left and right to shift the center of gravity. Wires attached to the cradle acted to warp the wings and move the rudders. The airplane is built of spruce and ash and covered with unbleached muslin fabric.

Wright Flyer, front view. (Wright Brothers Aeroplane Company)
Wright Flyer, front view. (Wright Brothers Aeroplane Company)

The Flyer is 21 feet, 1 inch (6.426 meters) long with a wingspan of 40 feet, 4 inches (12.293 meters) and overall height of 9 feet, 3 inches (2.819 meters). The wings have an angle of incidence of 3° 25′. A built-in curvature of the wings creates a continuously-varying anhedral. (The wingtips are 10 inches (25.4 centimeters) lower than at the centerline.) The vertical gap between the upper and lower wings is 6 feet, 2 inches (1.880 meters). There is no sweep or stagger. The total wing area is 510 square feet (47.38 square meters). The Flyer weighs 605 pounds (274.4 kilograms), empty.

Wright Flyer, right quarter view. The airplane was damaged during the landing after its fourth flight. (Wright Brothers Aeroplane Company)

The Flyer was powered by a single water-cooled, normally-aspirated, 201.06-cubic-inch-displacement (3.30 liter) 4-cylinder inline overhead valve gasoline engine, which produced 12 horsepower at 1,025 r.p.m. The engine was built by the Wright’s mechanic, Charlie Taylor. The engine has a cast aluminum alloy crankcase with cast iron cylinders. Fuel is supplied from a gravity-feed tank mounted under the leading edge of the upper wing. Total fuel capacity is 22 fluid ounces (0.65 liters).

Wright Flyer, left profile. (Wright Brothers Aeroplane Company)
Wright Flyer, right profile. (Wright Brothers Aeroplane Company)

Using chains, sprockets, and drive shafts, the engine turns two fixed-pitch wooden propellers in opposite directions at 350 r.p.m. They turn outboard at the top of their arcs. The propellers have a diameter of 8 feet, 6 inches (2.591 meters) and are positioned at the trailing edges of the wings in a pusher configuration.

The Wright's airfield at Kittyhawk, North Carolina. Wilbure Wright is standing in the hangar. (Wright Brothers Aeroplane Company)
The Wright’s airfield near Kittyhawk, North Carolina. Wilbur Wright is standing in the hangar. (Wright Brothers Aeroplane Company)

In 1928, the Wright Flyer was shipped to England where it was displayed at the Science Museum on Exhibition Road, London. It returned to the United States in 1948 and was placed in the collection of the Smithsonian Institution.

The Wright Brothers’ first airplane flew a total of 1 minute, 42.5 seconds, and travelled 1,472 feet (448.7 meters).

The 1903 Wright Flyer at the Smithsonian Institution. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)
The 1903 Wright Flyer at the Smithsonian Institution. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

Wilbur Wright died of typhoid fever in 1912. Orville continued to fly until 1918. He served as a member of the National Advisory Committee on Aeronautics (NACA, predecessor of NASA) for 28 years. He died in 1948.

The Boeing XB-15, 35-277, flies past the Wright Brothers Memorial at the Kill Devil Hills, near Kitty Hawk, North Carolina. (U.S. Air Force)

© 2018, Bryan R. Swopes

5 December 1963

RUSHWORTH, Robert H., Major General, USAF5 December 1963: On Flight 97 of the X-15 Program, Major Robert A. Rushworth flew the number one aircraft, Air Force serial number 56-6670, to an altitude of 101,000 feet 30,785 meters) and reached Mach 6.06 (4,018 miles per hour/6,466 kilometers per hour).

The rocketplane was dropped from the Boeing NB-52B Stratofortress “mother ship” 52-008, Balls 8, flying at 450 knots (833.4 kilometers per hour) at 45,000 feet (13,716 meters) over Delamar Dry Lake, Nevada. Rushworth ignited the Reaction Motors XLR-99-RM-1 rocket engine, which burned for 81.2 seconds before shutting down.

The flight plan had called for an altitude of 104,000 feet (31,699 meters), a 78 second burn and a maximum speed of Mach 5.70. With the difficulties of flying such a powerful rocketplane, Rushworth’s flight was actually fairly close to plan. During the flight the right inner windshield cracked.

Bob Rushworth landed the X-15 on Rogers Dry Lake at Edwards Air Force Base, California, after a flight of 9 minutes, 34.0 seconds.

Mach 6.06 was the highest Mach number reached for an unmodified X-15.

56-6670 flew 81 of the 199 flights of the X-15 Program. It is in the collection of the Smithsonian Institution National Air and Space Museum.

From 1960 to 1966, Bob Rushworth made 34 flights in the three X-15s, more than any other pilot.

North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)
North American Aviation Inc./U.S. Air Force/NASA X-15A 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

© 2016, Bryan R. Swopes

18 November 1966

Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)
Major William J. Knight, U.S. Air Force, with the modified X-15A-2, 56-6671, at Edwards Air Force Base, California. Knight is wearing a David Clark Co. MC-2 full-pressure suit with an MA-3 helmet. (U.S. Air Force)

18 November 1966: On Flight 175 of the research program, Major William J. (“Pete”) Knight, U.S. Air Force, flew the newly-modified North American Aviation X-15A-2, 56-6671, to Mach 6.33 (4,261 miles per hour/6,857 kilometers per hour) at 98,900 feet (30,245 meters). This is just 11 years, to the day, since Pete Everest made the first powered flight in the Bell Aircraft Corporation X-2 rocketplane, with more than 6 times an increase in speed.

On this date, NASA made an attempt to launch two X-15s, -671 and -672, using the NB-52A 52-003 and NB-52B 52-008. However -672, the number three ship, had to abort the mission.

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)

Balls 8, the NB-52B, flown by NASA test pilot Fitz Fulton and Colonel Joe Cotton, USAF, carried 56-6671 to the launch point over Mud Lake, Nevada, approximately 200 miles to the north of Edwards AFB. (This was the lake where -671 was severely damaged in an emergency landing, 9 November 1962. It was returned to North American to be rebuilt to the X-15A-2 configuration and returned to flight operation 19 months later.)

At 1:24:07.2 p.m. local time, Pete Knight and the X-15 were dropped from the pylon under the right wing of the B-52. He ignited the Reaction Motors XLR99-RM-1 and began to accelerate with its 57,000 pounds of thrust (253.549 kilonewtons).

Since this was to be a high temperature test flight, it was planned to fly no higher than 100,000 feet (30,480 meters). The denser atmosphere would result in greater aerodynamic heating of the rocketplane.

With the two external propellant tanks carrying an additional 1,800 gallons (6,814 liters) of liquid ammonia and liquid oxygen, the engine ran for 2 minutes, 16.4 seconds. The rocketplane had accelerated to Mach 2. The external tanks emptied in about 60 seconds and were jettisoned. The tanks were equipped with parachutes. They were recovered to be reused on later flights.

The X-15, now about 25,000 pounds (11,340 kilograms) lighter and without the aerodynamic drag of the tanks, continued to accelerate. At its highest speed, the rocketplane was travelling approximately 6,500 feet per second (1,981 meters per second), more than twice as fast as a high-powered rifle bullet. Its surface temperatures exceeded 1,200 °F. (649 °C.)

Knight landed the X-15 on Rogers Dry Lake at Edwards Air Force Base. The duration of this flight had been 8 minutes, 26.8 seconds.

The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)
The modified North American Aviation X-15A-2, 56-6671, with external propellant tanks mounted. (NASA)

© 2016, Bryan R. Swopes