Tag Archives: Kennedy Space Center

20 August 1975

Viking 1/Titan IIIE-Centaur launches from Kennedy Space Centaur, enroute to Mars, 20 August 1975. (NASA)

20 August 1975: The Viking 1 space probe was launched from Kennedy Space Center, Cape Canaveral, Florida, aboard a Titan IIIE/Centaur rocket. For the next ten months it traveled to Mars, the fourth planet of the Solar System. Once there, it was placed in orbit and began sending telemetry data back to Earth. A Viking Lander descended to the planet’s surface, landing at Chryse Planitia.

This was the first time that a spacecraft had landed on another planet. The orbiter continued to operate over the course of 1,485 orbits. As it ran low on fuel, mission controllers boosted it into a higher orbit to prevent it falling to the planet. Orbiter operations were terminated 17 August 1980. The lander operated for 6 years, 116 days, before the mission was terminated by a faulty transmission which resulted in a loss of contact, 11 November 1982.

The surface of Chryse Planitia, Mars, photographed by the Viking 1 Lander. (NASA)

© 2015, Bryan R. Swopes

24 July 1950

Bumper 8 launch at Launch Complex 3, Cape Canaveral Air Force Station, Florida, 24 July 1950. The wooden structure in the foreground houses the firing crew and support personnel. (NASA)

24 July 1950: The first rocket launch at Cape Canaveral, Florida, took place. Bumper 8 was a two-stage rocket consisting of a captured German V-2 ballistic missile as the first stage and a WAC Corporal sounding rocket as the upper, second, stage. The rocket lifted off from Launch Complex 3 at the Cape Canaveral Air Force Station and followed a ballistic trajectory over the Joint Long Range Proving Ground. This was a low-angle atmospheric flight. The WAC Corporal reached an altitude of 10 miles (16.1 kilometers) and traveled 200 miles (322 kilometers) downrange.

The Bumper Project was a U.S. Army Ordnance Corps program, with overall responsibility contracted to the General Electric Corporation. The V-2s used in the Bumper Project were modified at accept the WAC Corporal second stage. Compressed air was used to separate the stages after the V-2 engine was cut off.

The V2, or Vergeltungswaffen 2 (also known as the A4, Aggregat 4) was a ballistic missile weighing 28,000 pounds (12,500 kilograms) when fully loaded. It carried a 2,200 pound (1,000 kilogram) explosive warhead of amatol, a mixture of TNT and ammonium nitrate. Propellant was a 75/25 mixture of of ethanol and water with liquid oxygen as oxidizer.

When launched, the rocket engine burned for 65 seconds, accelerating the rocket to 3,580 miles per hour (5,761 kilometers per hour) on a ballistic trajectory. The maximum range of the rocket was 200 miles (322 kilometers) with a peak altitude between 88 and 128 miles (142–206 kilometers), depending on the desired range. On impact, the rocket was falling at 1,790 miles per hour (2,881 kilometers per hour).

The V-2 could only hit a general area and was not militarily effective. Germany used it against England, France, The Netherlands and Belgium as a terror weapon. More than 3,200 V-2 rockets were launched against these countries.

At the end of World War II, many V-2 rockets and components were captured by Allied forces and were brought to the United States for research, along with many of the German engineers, scientists and technicians who had worked on the German rocket program. Others were captured by the Soviet army.

Bumper 8 supported by a gantry at Launch Complex 3, Cape Canaveral Air Force Station, Florida. (U.S. Army)

The WAC Corporal was a liquid-fueled hypergolic rocket. After separation from the first stage, the WAC Corporal was capable of reaching more than 80 miles (129 kilometers). It was designed by the Jet Propulsion Laboratory in Pasadena, California, and built by Douglas Aircraft. The rocket carried small research packages into the upper atmosphere. The two-stage rocket was used to develop launch techniques and to refine the separation of upper stages at very high speed.

Now named the Kennedy Space Center, but known simply as “The Cape,” the location was selected to allow rocket testing to take place over the Atlantic Ocean, minimizing danger to persons and property. As one of the points within the United States closest to the Equator, rockets launched on an eastward trajectory receive additional velocity due to the Earth’s rotation.

Launch Pad 3 at Cape Canaveral, circa 1950. A rocket is on the pad surrounded by the gantry structure. (U.S. Air Force)
Launch Complex 3 at Cape Canaveral, 28 July 1950. The Bumper 7 two-stage rocket is on the pad surrounded by a gantry structure. It was launched the day after this photograph was taken. (U.S. Air Force)

© 2016, Bryan R. Swopes

23 July 1999, 16:31:00 UTC, T minus Zero

Colonel Eileen Marie Collins, U.S. Air Force, wearing ACES suit. (Annie Leibovitz)
Colonel Eileen Marie Collins, U.S. Air Force, wearing ACES suit. (Annie Leibovitz/NASA Art Program)

23 July 1999: at 12:31 a.m. Eastern Daylight Time (16:31:00 UTC), the Space Shuttle Columbia (OV-102) lifted off on its 26th mission, STS-93, to place the Chandra X-ray Observatory in orbit. The total mission duration was 4 days, 22 hours, 49 minutes, 37 seconds.

In command was Colonel Eileen Marie Collins, United States Air Force, on her third shuttle flight. This was the first time that a space shuttle mission had been commanded by a woman.

Colonel Collins had previously served as pilot aboard Discovery STS-63 and Atlantis STS-84. She would later command Discovery (STS-114), the “Return To Flight” mission following the loss of Columbia. She logged 38 days, 10 hours of space flight. Eileen Collins retired in 2006.

Space Shuttle Columbia (STS-93) launch from Launch Complex 39B, Kennedy Space Center, 16:31:00 UTC, 23 July 1999. (NASA)

© 2017, Bryan R. Swopes

21 July 2011, 21:54:00 UTC

Atlantis touches down at the Shuttle Landing Facility, 0554 EDT, 21 July 2011. (NASA)
Atlantis touches down at the Shuttle Landing Facility, 0554 EDT, 21 July 2011. (NASA)

21 July 2011, 5:54:00 a.m. Eastern Daylight Time, (21:54:00 UTC) Space Shuttle Atlantis on mission STS-135, landed at Kennedy Space Center, Cape Canaveral, Florida. Wheel stop was 5:57:54 a.m., EDT.

This 13-day mission had been the thirty-third flight for Atlantis. It had spent a total of 307 days in Earth orbit.

Atlantis (STS-135) landing at he Shuttle Landing Facility. (NASA)

This brought to a close The Era of American Manned Space Flight which began 50 years, 2 months, 15 days, 20 hours, 23 minutes, 41 seconds earlier with the launch of Alan Shepard in Freedom 7, 5 May 1961, 09:34:13 EST.

The benefits of the NASA programs over these decades are immeasurable.

Space Shuttle Atlantis main wheel stop. (NASA)
Space Shuttle Atlantis main wheel stop. (NASA)

© 2015, Bryan R. Swopes

17 July 1975

Apollo CSM-111 in orbit, as seen from Soyuz 19, 17 July 1975. (NASA )

At 12:20 UTC, 15 July 1975, Soyuz 19 launched from Gagarin’s Start at Baikonur Cosmosdrome, Kazakh SSR with Alexei Leonov and Valeri Kubasov, both on their second space flights. The launch vehicle was a Soyuz-U three-stage rocket.

At 19:50 UTC, 15 July 1975, Apollo ASTP lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida. The crew was Thomas P. Stafford on his fourth space flight, Vance D. Brand on his first, and Donald K. “Deke” Slayton also on his first. The launch vehicle was a Saturn IB.

At 16:19:09 UTC, 17 July 1975, the two orbiting spacecraft rendezvoused in orbit and docked. Using a Docking Module airlock, the two crews each opened their spacecraft hatches and shook hands. The two ships remained joined for 44 hours, separating once for the Soyuz crew to take its turn to maneuver for docking with the Apollo Command and Service Module.

The Apollo command module from the mission is on display at the California Science Center in Los Angeles. The descent module of Soyuz 19 is on display at the RKK Energiya museum in Korolyov, Moscow Oblast, Russia.

This was the final flight of the Apollo spacecraft.

Soyuz 19 in orbit, as seen from Apollo CSM-111, 17 July 1975. (NASA)

© 2015, Bryan R. Swopes