Tag Archives: Two-Stage Rocket

4 December 1965, 19:30:03.702 UTC

Gemini 7 lifts off from Launch Complex 19, 1430 EST, 4 December 1965. (NASA)
Gemini VII/Titan II GLV-7 lifts off from Launch Complex 19, 1430 EST, 4 December 1965. (NASA)

4 December 1965, 19:30:03.702 UTC: At 2:30 p.m., Eastern Standard Time, Gemini VII/Titan II GLV-7 lifted of from Launch Complex 19 at the Cape Kennedy Air Force Station, Cape Kennedy, Florida. On board were Major Frank F. Borman II, United States Air Force, the mission command pilot, and Lieutenant Commander James A. Lovell, Jr., United States Navy, pilot. During the climb to Earth orbit, the maximum acceleration reached was 7.3 Gs.

Gemini VII was placed into Earth orbit at an initial maximum altitude (apogee) of 177.1 nautical miles (327.8 kilometers) and a minimum (perigee) of 87.2 nautical miles (161.5 kilometers), at a velocity of 16,654.1 miles per hour (26,802.2 kilometers per hour), relative to Earth.

This mission was a planned 14-day flight which would involve an orbital rendezvous with another manned spacecraft, Gemini VI-A. The actual total duration of the flight was 330 hours, 35 minutes, 1 second.

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, Missouri, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a series of cone-shaped segments forming a reentry module and an adapter section. It had an overall length of 18 feet, 9.84 inches (5.736 meters) and a maximum diameter of 10 feet, 0.00 inches (3.048 meters) at the base of the equipment section. The reentry module was 11 feet (3.353 meters) long with a maximum diameter of 7 feet, 6.00 inches (2.347 meters). The Gemini re-entry heat shield was a spherical section with a radius of 12 feet, 0.00 inches (3.658 meters). The weight of the Gemini spacecraft varied from ship to ship. Gemini VII had a gross weight of 8,076.10 pounds (3,663.26 kilograms) at launch. It was shipped from St. Louis to Cape Kennedy in early October 1965.

Gemini 7, photographed in Earth orbit from Gemini 6, December 1965. (NASA)
Gemini VII, photographed in Earth orbit from Gemini VI-A, 15–16 December 1965. (NASA)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin Marietta’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program. The GLV-7 first and second stages were shipped from Middle River to Cape Kennedy on 9 October 1965.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 70 feet, 2.31 inches (21.395 meters) long with a diameter of 10 feet (3.048 meters). It was powered by an Aerojet Engineering Corporation LR87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by Aerozine 50, a hypergolic 51/47/2 blend of hydrazine, unsymetrical-dimethyl hydrazine, and water. Ignition occurred spontaneously as the components were combined in the combustion chambers. The LR87-7 produced approximately 430,000 pounds of thrust (1,912.74 kilonewtons). It was not throttled and could not be shut down and restarted. Post flight analysis indicated that the first stage engine of GLV-7 had produced an average of 462,433 pounds of thrust (2,057.0 kilonewtons). The second stage was 25 feet, 6.375 inches (7.031 meters) long, with the same diameter, and used an Aerojet LR91 engine which produced approximately 100,000 pounds of thrust (444.82 kilonewtons), also burning Aerozine 50. GLV-7’s LR91 produced an average of 102,584 pounds of thrust (456.3 kilonewtons).

The Gemini/Titan II GLV-7 combination had a total height of 107 feet, 7.33 inches (32.795 meters) and weighed 346,228 pounds (157,046 kilograms) at ignition.

Lieutenant Commander James A. Lovell, Jr., U.S. Navy, and Major Frank F. Borman II, U.S. Air Force, with a scale model of a Gemini spacecraft. (NASA)
Lieutenant Commander James A. Lovell, Jr., U.S. Navy, and Major Frank F. Borman II, U.S. Air Force, with a scale model of a Gemini spacecraft. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

16 November 1973

Skylab 4 (SA-208) lift off from Launch Complex 39B, 14:01:23 UTC, 16 November 1973. (NASA)

16 November 1973: Skylab 4 lifted off from Launch Complex 39B, Kennedy Space Center, at 14:01:23 UTC. Aboard the Apollo Command and Service Module were NASA astronauts Lieutenant Colonel Gerald Paul Carr, U.S. Marine Corps, Mission Commander;  Lieutenant Colonel William Reid Pogue, U.S. Air Force; and Edward George Gibson, Ph.D. This would be the only space mission for each of them. They would spend 84 days working aboard Skylab.

Skylab 4 crew, left to right, Carr, Gibson and Pogue. (NASA)
Skylab 4 crew, left to right, Gerald Carr, Edward Gibson and William Pogue. (NASA)

The launch vehicle was a Saturn IB, SA-208. This rocket had previously stood by as a rescue vehicle during the Skylab 3 mission. The Saturn IB consisted of an S-IB first stage and an S-IVB second stage.

Saturn IB Launch Vehicle. (NASA)
Mission SL-2 Saturn IB Launch Vehicle. (NASA)

The S-IB was built by Chrysler Corporation Space Division at the Michoud Assembly Facility near New Orleans, Louisiana. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks, with 4 containing the RP-1 fuel, and 4 filled with liquid oxygen, surrounded a Jupiter rocket fuel tank containing liquid oxygen. Total thrust of the S-IB stage was 1,666,460 pounds (7,417.783 kilonewtons) and it carried sufficient propellant for a maximum 4 minutes, 22.57 seconds of burn. First stage separation was planned for n altitude of 193,605 feet, with the vehicle accelerating through 7,591.20 feet per second (2,313.80 meters per second).

The McDonnell Douglas Astronautics Co. S-IVB stage was built at Huntington Beach, California. It was powered by one Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The J-2 produced 229,714 pounds of thrust (1,021.819 kilonewtons), at high thrust, and 198,047 pounds (880.957 kilonewtons) at low thrust). The second stage carried enough fuel for 7 minutes, 49.50 seconds burn at high thrust. Orbital insertion would be occur 9 minutes, 51.9 seconds after launch, at an altitude of 98.5 miles (158.5 kilometers) with a velocity of 25,705.77 feet per second (7,835.12 meters per second).

The Skylab-configuration Saturn IB rocket was 223 feet, 5.9 inches (68.119 meters) tall. It had a maximum diameter of 22.8 feet (6.949 meters), and the span across the first stage guide fins was 40.7 feet (12.405 meters). Its empty weight was 159,000 pounds (72,122 kilograms) and at liftoff, it weighed 1,296,000 pounds (587,856 kilograms). It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

Skylab in Earth orbit, as seen by the departing Skylab 4 mission crew, 8 February 1974. (NASA)
Skylab in Earth orbit, as seen by the departing Skylab 4 mission crew, 8 February 1974. (NASA)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

11 November 1966, 20:46:33.419 UTC, T minus Zero

Gemini XII lifts off from LC-19 at 2:21:04 p.m., EST, 11 November 1966. (NASA)
Gemini XII lifts off from LC-19 at 3:46:33 p.m., EST, 11 November 1966. (NASA)

11 November 1966: Gemini 12 lifted off from Launch Complex 19 at the Cape Canaveral Air Force Station, Florida, at 3:36.33.419 p.m., Eastern Standard Time. Two NASA Astronauts, Captain James A Lovell, Jr., United States Navy, and Major Edwin E. (“Buzz”) Aldrin, Jr., United States Air Force, were the crew. This was the second space flight for Lovell, who had previously flown on Gemini VII, and would later serve as Command Module Pilot on Apollo 8 and Mission Commander on Apollo 13. It was Aldrin’s first space flight. He would later be the Lunar Module Pilot of Apollo 11, and was the second human to set foot of the surface of the Moon.

The Gemini 12 mission was to rendezvous and docking with an Agena Target Vehicle, which had been launched from Launch Complex 14, 1 hour, 38 minutes, 34.731 seconds earlier by an Atlas Standard Launch Vehicle (SLV-3), and placed in a nearly circular orbit with a perigee of 163 nautical miles (187.6 statute miles/301.9 kilometers) and apogee of 156 nautical miles (179.5 statute miles/288.9 kilometers).

Artist’s concept of Gemini spacecraft, 3 January 1962. (NASA-S-65-893)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship, but Spacecraft 12 weighed 8,296.47 pounds (3,763.22 kilograms) at liftoff.

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin Marietta’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust (1,912.74 kilonewtons).¹ It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust (444.82 kilonewtons).²

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.³

Astronaut Buzz Aldrin standing in the open hatch of Gemini XII in Earth orbit. (NASA)

Gemini XII was the tenth and last flight of the Gemini program. The purpose of this mission was to test rendezvous and docking with an orbiting Agena Target Docking Vehicle and to test extravehicular activity (“EVA,” or “space walk”) procedures. Both of these were crucial parts of the upcoming Apollo program and previous problems would have to be resolved before the manned space flight projects could move to the next phase.

Buzz Aldrin had made a special study of EVA factors, and his three “space walks,” totaling 5 hours, 30 minutes, were highly successful. The rendezvous and docking was flown manually because of a computer problem, but was successful. In addition to these primary objectives, a number of scientific experiments were performed by the two astronauts.

Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)
Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)

Gemini XII reentered Earth’s atmosphere and splashed down in the Atlantic Ocean, just 3.8 nautical miles (4.4 statute miles/7.0 kilometers) from the planned target point. Lovell and Aldrin were hoisted aboard a Sikorsky SH-3A Sea King helicopter and transported to the primary recovery ship, USS Wasp (CVS-18). The total duration of the flight was 3 days, 22 hours, 34 minutes, 31 seconds.

Gemini XII astronauts Major Edwin E. Aldrin, Jr., USAF, and Captain James A. Lovell, Jr., USN, arrive aboard USS Wasp (CVS-18), 15 November 1966. (NASA)

¹ Post-flight analysis gave the total average thrust of GLV-12’s first stage as 458,905 pounds of thrust (2,041.31 kilonewtons)

² Post-flight analysis gave the total average thrust of GLV-12’s second stage as 99,296 pounds of thrust (441.69 kilonewtons)

³ Gemini XII/Titan II GLV (GLV-12) weighed 345,710 pounds (156,811 kilograms) at Stage I ignition.

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

4 November 1962, 06:30 GMT

Dominic Tightrope fireball, 00:00 GMT, 4 November 1962. (Nuclear Weapons Archive)
Dominic Tightrope fireball, 06:30 GMT, 4 November 1962. (Nuclear Weapons Archive)

4 November 1962: A Western Electric M6 Nike Hercules air-defense guided missile was launched from Johnston Island in the North Pacific Ocean. The missile was armed with a  W-31 Mod 1 nuclear warhead, and had been modified to include a command arm/fire capability, and an automatic disarm feature.

At an altitude of 69,000 feet (21,031 meters), 2 miles (3.2 kilometers) south-southwest of the island, the warhead detonated with an explosive yield of 12 kilotons.

This nuclear weapon effects test, Dominic Tightrope, was the final test of the Operation Dominic I test series, and was the last atmospheric nuclear test conducted by the United States.

The Nike Hercules was a long-range, high-altitude surface-to-air guided missile, designed and produced by Western Electric Company and the Douglas Aircraft Company. Douglas manufactured the missile at Charlotte, North Carolina. It was a two-stage missile with a cluster of four Hercules Powder Company M5E1 solid-fuel rocket engines as the boost stage.

The Nike Hercules had an overall length of 41 feet, 1.35 inches (12.531 meters). Its weight was 10,710 pounds (4,858 kilograms). The Hercules could reach an altitude of 100,000 feet (30,480 meters) and had a range of 90 miles (145 kilometers). The missile’s maximum speed was Mach 3.65.

The booster stage was 14 feet, 2.845 inches (4.339 meters) long and had a maximum diameter of 3 feet, 7.25 inches (1.099 meters). There were four stabilizing fins spaced at 90°. The fin span was 11 feet, 5.88 inches (3.502 meters). The leading edges were swept aft 24.23°. The booster stage produced 173,600 pounds of thrust (772.211 kilonewtons) and burned for 3.4 seconds.

Nike Hercules second stage.

The second stage was 26 feet, 10.500 inches (8.192 meters) long with a maximum diameter of 2 feet, 7.50 inches (0.800 meters). It had four triangular wings and four small “linealizer” fins, which were also spaced 90°. The maximum wing span was 7 feet, 4.00 inches (2.235 meters). The missile was powered by a Thiokol Chemical Corporation M30 solid-fuel rocket engine which produced 13,750 pounds of thrust (61.163 kilonewtons) and had a burn time of 29 seconds.

A Nike Hercules air defense missile launch. (U.S. Army)
A Nike Hercules air defense missile launch. (U.S. Army)

The Nike air defense missile system used multiple radars to track incoming target aircraft and the outgoing missile. Computer systems analyzed the data and signals were sent to guide the missile toward the target. This was a complex system and multiple missiles were based together at missile sites around the defended area.

The Hercules could be armed with either a M17 high explosive fragmentation warhead or a 20–40 kiloton W-31 nuclear warhead. Although designed to attack jet aircraft, the Nike Hercules also successfully intercepted guided and ballistic missiles, and had a surface-to-surface capability.

The Western Electric SAM-A-25 Nike B was renamed Nike Hercules in 1956 while still in development. It was redesignated Guided Missile, Air Defense M6 in 1958, and MIM-14 in 1963. (“MIM” is Department of Defense terminology for a mobile, ground-launched interceptor missile.) About 25,000 Nike Hercules missiles were built. Initially deployed in 1958, it remained in service with the U.S. Army until 1984.

The W-31 was a boosted fission implosion warhead designed by the Los Alamos Scientific Laboratory. It weighed 900 pounds (408 kilograms) and had a selectable yield of from 2 to 40 kilotons. About 2,550 warheads were produced and remained in service until 1989.

A battery of U.S. Army Nike Hercules SAM-A-25 surface-to-air guided missiles. (U.S. Army)
A battery of U.S. Army Nike Hercules MIM-14 surface-to-air guided missiles. (U.S. Army)

© 2018, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

24 July 1950

Bumper 8 launch at Launch Complex 3, Cape Canaveral Air Force Station, Florida, 24 July 1950. The wooden structure in the foreground houses the firing crew and support personnel. (NASA)

24 July 1950: The first rocket launch at Cape Canaveral, Florida, took place. Bumper 8 was a two-stage rocket consisting of a captured German V-2 ballistic missile as the first stage and a WAC Corporal sounding rocket as the upper, second, stage. The rocket lifted off from Launch Complex 3 at the Cape Canaveral Air Force Station and followed a ballistic trajectory over the Joint Long Range Proving Ground. This was a low-angle atmospheric flight. The WAC Corporal reached an altitude of 10 miles (16.1 kilometers) and traveled 200 miles (322 kilometers) downrange.

The Bumper Project was a U.S. Army Ordnance Corps program, with overall responsibility contracted to the General Electric Corporation. The V-2s used in the Bumper Project were modified at accept the WAC Corporal second stage. Compressed air was used to separate the stages after the V-2 engine was cut off.

The V2, or Vergeltungswaffen 2 (also known as the A4, Aggregat 4) was a ballistic missile weighing 28,000 pounds (12,500 kilograms) when fully loaded. It carried a 2,200 pound (1,000 kilogram) explosive warhead of amatol, a mixture of TNT and ammonium nitrate. Propellant was a 75/25 mixture of of ethanol and water with liquid oxygen as oxidizer.

When launched, the rocket engine burned for 65 seconds, accelerating the rocket to 3,580 miles per hour (5,761 kilometers per hour) on a ballistic trajectory. The maximum range of the rocket was 200 miles (322 kilometers) with a peak altitude between 88 and 128 miles (142–206 kilometers), depending on the desired range. On impact, the rocket was falling at 1,790 miles per hour (2,881 kilometers per hour).

The V-2 could only hit a general area and was not militarily effective. Germany used it against England, France, The Netherlands and Belgium as a terror weapon. More than 3,200 V-2 rockets were launched against these countries.

At the end of World War II, many V-2 rockets and components were captured by Allied forces and were brought to the United States for research, along with many of the German engineers, scientists and technicians who had worked on the German rocket program. Others were captured by the Soviet army.

Bumper 8 supported by a gantry at Launch Complex 3, Cape Canaveral Air Force Station, Florida. (U.S. Army)

The WAC Corporal was a liquid-fueled hypergolic rocket. After separation from the first stage, the WAC Corporal was capable of reaching more than 80 miles (129 kilometers). It was designed by the Jet Propulsion Laboratory in Pasadena, California, and built by Douglas Aircraft. The rocket carried small research packages into the upper atmosphere. The two-stage rocket was used to develop launch techniques and to refine the separation of upper stages at very high speed.

Now named the Kennedy Space Center, but known simply as “The Cape,” the location was selected to allow rocket testing to take place over the Atlantic Ocean, minimizing danger to persons and property. As one of the points within the United States closest to the Equator, rockets launched on an eastward trajectory receive additional velocity due to the Earth’s rotation.

Launch Pad 3 at Cape Canaveral, circa 1950. A rocket is on the pad surrounded by the gantry structure. (U.S. Air Force)
Launch Complex 3 at Cape Canaveral, 28 July 1950. The Bumper 7 two-stage rocket is on the pad surrounded by a gantry structure. It was launched the day after this photograph was taken. (U.S. Air Force)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather