Tag Archives: Cape Canaveral Air Force Station

5 December 2014, 12:05 UTC, T minus Zero

The first Orion spacecraft lifts off from LC 37, Kennedy Space Center, Cape canaveral, Florida, aboatd a Delta IV Heavy. (Reuters)
The first Orion spacecraft lifts off from Space Launch Complex 37, Cape Canaveral Air Force Station, Cape Canaveral, Florida, aboard a Delta IV Heavy. (Mike Brown/Reuters)

5 December 2014: At 7:05 a.m., EST, a United Launch Alliance Delta IV Heavy carried the first Lockheed Martin Corp. Orion spacecraft, EFT-1, into Earth orbit.

This was the first test flight of the new deep space vehicle. There were no astronauts aboard.

Liftoff weight of the Orion/Delta IV Heavy was 1,630,000 pounds (739,356 kilograms).

The Orion Multi-Purpose Crew Vehicle is produced by Lockheed Martin Corporation, and consists of a Launch Abort System, Crew Module, Service Module and a Stage Adapter. Gross weight at liftoff is 78,010 pounds (35,385 kilograms). The Crew Module accommodates 4 astronauts. Its gross liftoff weight is 22,900 pounds (10,387 kilograms), and landing weight is 20,500 pounds (9,299 kilograms). The crew area has a volume of 316 cubic feet (8.95 cubic meters).

Artist's conception of an Orion Multi-Purpose Crew Vehicle in Low Earth Orbit. (NASA)
Artist’s conception of an Orion Multi-Purpose Crew Vehicle in Low Earth Orbit. (NASA)

A series of eight parachutes decelerates the Orion Crew Module on re-entry. Touch-down speed is planned for less than 20 miles per hour (32 kilometers per hour).

On its second orbit, the space craft reached an altitude of approximately 3,600 miles (5,794 kilometers). This allowed the vehicle’s re-entry speed to exceed 20,000 miles per hour (32,187 kilometers per hour), generating heat shield temperatures of over 4,000 °F. (2,204 °C.)

The Orion completed two orbits and landed in the eastern Pacific Ocean, approximately 650 miles (1,046 kilometers) southwest of San Diego, California.

The Delta IV Heavy combines a Delta IV two-stage liquid-fueled rocket with two Common Core Boosters. It is capable of placing a 63,471 pound (28,790 kilograms) payload into Low Earth Orbit.

The Delta IV Common Booster Core is 134.0 feet (40.8 meters) long and 16 feet, 10.0 inches (5.131 meters) in diameter. They are each powered by an Aerojet Rocketdyne RS-68A engine, producing 705,250 pounds of thrust (3,137.11 kilonewtons), at Sea Level, each, giving the Delta IV Heavy a total of 2,115,750 pounds of thrust (9,411.32 at liftoff. The RS-68A is 17.1 feet (5.21 meters) long, 8.0 feet (2.44 meters) in diameter, and weighs 14,870 pounds (6,745 kilograms).

The Delta IV Heavy’s second stage is 42.8 feet (13.05 meters) long, and is also 16 feet, 10.0 inches in diameter. It uses an Aerojet Rocketdyne RL-10B-2 engine, producing 24,750 pounds of thrust (110.09 kilonewtons) of thrust. The RL-10B-2 is 13.6 feet (4.15 meters) long, 7.0 feet (2.13 meters) in diameter, and weighs 611 pounds (277 kilograms).

All engines are fueled with liquid oxygen and liquid hydrogen.

47–49 seconds after liftoff, depending on launch profile, the first stage (center CBC) engine throttles down to 54.5%, while the boosters remain at full throttle. After 235 seconds of flight, the booster engines throttle down to 54.5%, and 7 seconds later, cut off. The boosters are jettisoned at 245 seconds. 1 second later, the first stage RS-68 throttles up to 108.5%. It cuts of at 328 seconds, and the first and second stage separate at 334 seconds. The second stage engine ignites at 347 seconds, and cuts off at 411–421 seconds.

Orion/Delta IV Heavy liftoff at Launch Complex 37B, 5 December 2014. (United Launch Alliance)
Orion/Delta IV Heavy liftoff at Launch Complex 37B, 7:05 a.m., 5 December 2014. (United Launch Alliance)

© 2016, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

11 November 1966, 20:46:33.419 UTC, T minus Zero

Gemini XII lifts off from LC-19 at 2:21:04 p.m., EST, 11 November 1966. (NASA)
Gemini XII lifts off from LC-19 at 3:46:33 p.m., EST, 11 November 1966. (NASA)

11 November 1966: Gemini 12 lifted off from Launch Complex 19 at the Cape Canaveral Air Force Station, Florida, at 3:36.33.419 p.m., Eastern Standard Time. NASA Astronauts James A Lovell, Jr., and Edwin E. (“Buzz”) Aldrin, Jr. were the crew. This was the second space flight for Lovell, who had previously flown on Gemini VII, and would later serve as Command Module Pilot on Apollo 8 and Mission Commander on Apollo 13. It was Aldrin’s first space flight. He would later be the Lunar Module Pilot of Apollo 11, and was the second human to set foot of the surface of the Moon.

The Gemini 12 mission was to rendezvous and docking with an Agena Target Vehicle, which had been launched from Launch Complex 14, 1 hour, 38 minutes, 34.731 seconds earlier by an Atlas Standard Launch Vehicle (SLV-3), and placed in a nearly circular orbit with a perigee of 163 nautical miles (187.6 statute miles/301.9 kilometers) and apogee of 156 nautical miles (179.5 statute miles/288.9 kilometers).

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship, but Spacecraft 12 weighed 8,296.47 pounds (3,763.22 kilograms) at liftoff.

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter. The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust (1,912.74 kilonewtons).¹ It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust (444.82 kilonewtons).²

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.³

Astronaut Buzz Aldrin standing in the open hatch of Gemini XII in Earth orbit. (NASA)

Gemini XII was the tenth and last flight of the Gemini program. The purpose of this mission was to test rendezvous and docking with an orbiting Agena Target Docking Vehicle and to test extravehicular activity (“EVA,” or “space walk”) procedures. Both of these were crucial parts of the upcoming Apollo program and previous problems would have to be resolved before the manned space flight projects could move to the next phase. Buzz Aldrin had made a special study of EVA factors, and his three “space walks,” totaling 5 hours, 30 minutes, were highly successful. The rendezvous and docking was flown manually because of a computer problem, but was successful. In addition to these primary objectives, a number of scientific experiments were performed by the two astronauts.

Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)
Gemini XII is tethered to the Agena TDV, in Earth orbit over the southwest United States and northern Mexico. (NASA)

Gemini XII reentered Earth’s atmosphere and splashed down in the Atlantic Ocean, just 3.8 nautical miles ( statute miles/ kilometers) from the planned target point. Lovell and Aldrin were hoisted aboard a Sikorsky SH-3A helicopter and transported to the primary recovery ship, USS Wasp (CVS-18). Total duration of the flight was 3 days, 22 hours, 34 minutes, 31 seconds.

Gemini XII astronauts Major Edwin E. Aldrin, Jr., USAF, and Captain James A. Lovell, Jr., USN, arrive aboard USS Wasp (CVS-18), 15 November 1966. (Bettman/Corbis)
Gemini XII astronauts Major Edwin E. Aldrin, Jr., USAF, and Captain James A. Lovell, Jr., USN, arrive aboard USS Wasp (CVS-18), 15 November 1966. (Bettman/Corbis)

¹ Post-flight analysis gave the total average thrust of GLV-12’s first stage as 458,905 pounds of thrust (2,041.31 kilonewtons)

² Post-flight analysis gave the total average thrust of GLV-12’s second stage as 99,296 pounds of thrust (441.69 kilonewtons)

³ Gemini XII/Titan II GLV (GLV-12) weighed 345,710 pounds (156,811 kilograms) at Stage I ignition.

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

11 October 1968, 15:02:45 UTC, T plus 000:00:00.36

Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34 at the Kennedy Space Center, 15:02:45 UTC, 11 October 1968. (NASA)
Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34, Cape Kennedy Air Force Station, 15:02:45 UTC, 11 October 1968. (NASA)

11 October 1968: at 15:02:45 UTC, Apollo 7, the first manned Apollo spacecraft, was launched aboard a Saturn IB rocket from Launch Complex 34, Cape Kennedy Air Force Station, Cape Kennedy, Florida. The flight crew members were Captain Walter M. (“Wally”) Schirra, United States Navy, the mission commander, on his third space flight; Major Donn F. Eisele, U.S. Air Force, the Command Module Pilot, on his first space flight; and Major R. Walter Cunningham, U.S. Marine Corps, Lunar Module Pilot, also on his first space flight.

The flight crew of Apollo 7, left to right: Donn Eisele, USAF, Capain Walter M. ("Wally") Schirra, USN, and Major R. Walter Cunningham, USMC. (NASA)
The flight crew of Apollo 7, left to right: Major Donn F. Eisele, USAF, Captain Walter M. (“Wally”) Schirra, USN, and Major R. Walter Cunningham, USMCR. (NASA) 

The mission was designed to test the Apollo space craft and its systems. A primary goal was the test of the Service Propulsion System (SPS) , which included a restartable Aerojet AJ10-137 rocket engine which would place an Apollo Command and Service Module into and out of lunar orbit on upcoming missions. The SPS engine was built by Aerojet General Corporation, Azusa, California. It burned a hypergolic fuel combination of Aerozine 50 (a variant of hydrazine) and nitrogen tetraoxide, producing 20,500 pounds of thrust. It was designed for a 750 second duration, or 50 restarts during a flight. This engine was fired eight times and operated perfectly.

The duration of the flight of Apollo 7 was 10 days, 20 hours, 9 minutes, 3 seconds, during which it orbited the Earth 163 times. The spacecraft splashed down 22 October 1968, approximately 230 miles (370 kilometers) south south west of Bermuda in the Atlantic Ocean, 8 miles (13 kilometers) from the recovery ship, the aircraft carrier USS Essex (CVS-9).

The Apollo command module was a conical space capsule designed and built by North American Aviation to carry a crew of three on space missions of two weeks or longer. Apollo 7 (CSM-101) was the first Block II capsule, which had been extensively redesigned following the Apollo 1 fire which had resulted in the deaths of three astronauts. The Block II capsule was 10 feet, 7 inches (3.226 meters) tall and 12 feet, 10 inches (3.912 meters) in diameter. It weighed 12,250 pounds (5,557 kilograms). There was 218 cubic feet (6.17 cubic meters) of livable space inside.

The Saturn IB consisted of an S-IB first stage and an S-IVB second stage. The S-IB was built by Chrysler. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks containing the RP-1 fuel surrounded a Jupiter rocket tank containing the liquid oxygen. Total thrust of the S-IB stage was 1,600,000 pounds and it carried sufficient propellant for 150 seconds of burn. This would lift the vehicle to an altitude of 37 nautical miles (69 kilometers). The Douglas-built S-IVB stage was powered by one Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The single engine produced 200,000 pounds of thrust and had enough fuel for 480 seconds of burn.

The Saturn IB rocket stood 141 feet, 6 inches (43.13 meters) without payload. It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 at 35,000 feet (10,668 meters). (NASA)

© 2017, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

3 October 1962, 12:15:12 UTC, T minus Zero

Mercury-Atlas 8 lifts off from Cape Canaveral, Florida, 3 October 1962. (NASA)
Mercury-Atlas 8 lifts off from Launch Complex 14, Cape Canaveral Air Force Station, Cape Canaveral, Florida, 12:15:12 UTC, 3 October 1962. (NASA)

3 October 1962: At 08:15:12 a.m., Eastern Daylight Time, Commander Walter M. Schirra, Jr., United States Navy, lifted off from Cape Canaveral, Florida, aboard Mercury-Atlas 8 (MA-8). This was the fifth U.S. manned space flight and the third orbital flight.

The spacecraft, which Wally Schirra had named Sigma 7, entered a low earth orbit with the altitude varying from 84 nautical miles (156 kilometers) to 154 nautical miles (285 kilometers). Each orbit took 88 minutes, 54.6 seconds.

Schirra experimented with the manual flight control systems, took photographs and performed spatial-orientation exercises. There were some difficulties with the cooling of his pressure suit.

Wally Schirra took this photograph of Earth while in orbit over South America, 3 October 1962. (Walter M. Schirra, Jr./NASA)
Wally Schirra took this photograph of Earth while in orbit over South America, 3 October 1962. (Walter M. Schirra, Jr./NASA)

Sigma 7 completed 6 orbits and at T+8:52, fired the retro rockets to de-orbit. Reentry was successful and Sigma 7 landed within 0.5 miles (0.8 kilometers) of the primary recovery ship, the aircraft carrier USS Kearsarge (CVS-33).

The Mercury spacecraft, named Sigma 7, was built by McDonnell Aircraft Corporation, St. Louis, Missouri. It was the 16th Mercury capsule built. Designed to carry one pilot, it could be controlled in pitch, roll and yaw by thrusters. It was 9 feet, 7.72 inches (2.939 meters) long, and, bell-shaped, had a maximum diameter of 6 feet, 2.5 inches (1.885 meters). The spacecraft weighed 2,700 pounds (1,224.7 kilograms) at launch.

Wally Schirra, wearing a B.F. Goodrich full-pressure suit, is helped into the Sigma 7 Mercury capsule. (NASA)

The rocket, a “1-½ stage”, liquid-fueled Atlas LV-3B, number 113-D, was built by Convair at San Diego, California. It was developed from a U.S. Air Force Atlas D intercontinental ballistic missile, modified for use as a “man-rated” orbital launch vehicle. The LV-3B was 94.3 feet (28.7 meters) tall with a maximum diameter of 10.0 feet (3.05 meters). When ready for launch it weighed 260,000 pounds (120,000 kilograms) and could place a 1,360 kilogram payload into Low Earth orbit. The Atlas’ three engines were built by the Rocketdyne Division of North American Aviation, Canoga Park, California. The XLR89 booster had two 150,000 pound thrust chambers, and the LR105 sustainer engine produced 57,000 pounds of thrust. The rocket was fueled by a highly-refined kerosene, RP-1, with liquid oxygen as the oxidizer.

Schirra was the first astronaut to wear an Omega Speedmaster chronograph during spaceflight. (Omega Reference No. CK2998). The Speedmaster would become flight-qualified by NASA, and the Speedmaster Professional is known as the “moon watch.”

Sigma 7 is on display at the U.S. Astronaut Hall of Fame, Titusville, Florida, near the Kennedy Space Center.

Wally Schirra commanded Gemini 6A during the orbital rendezvous mission with Gemini 7. Later, he commanded Apollo 7, an 11-day orbital mission.

Captain Walter M. Schirra, Jr., USN, died 3 May 2007 at the age of 84 years.

Commander Walter M. Schirra, Jr., United States Navy. (NASA)
Commander Walter M. Schirra, Jr., United States Navy. (NASA)

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather

18 September 1959

Vanguard SLV-7 is launched from LC-18A, 05:16:00 UTC, 18 September 1959. It carried a 50 pound satellite into Earth orbit. (NASA)

18 September 1959: At 05:16:00 UTC, a three-stage Vanguard Satellite Launch Vehicle lifted of from Launch Complex 18A at the Cape Canaveral Air Force Station, Florida. The rocket placed a 50 pound (22.7 kilogram) scientific satellite into Earth orbit.

Contained inside the satellite’s 20 inch (50.8 centimeter) diameter magnesium outer shell were sensors and transmitters. The satellite collected data on the Earth’s magnetic field, the Van Allen Radiation Belt, micrometeorite impacts on the satellite and measured drag acting to slow the satellite in its orbit.

Vanguard 3 transmitted data for 84 days before it stopped functioning. It is estimated that it will remain in orbit around the Earth for 300 years.

© 2015, Bryan R. Swopes

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather