Tag Archives: Bell X-1

25 January 1946

Jack Valentine Woolams, Chief Experimental Test Pilot, Bell Aircraft Corporation. (John Trudell/Ancestry)

25 January 1946:¹ Near Pinecastle Army Airfield in central Florida, Bell Aircraft Corporation Senior Experimental Test Pilot Jack Woolams made the first unpowered glide flight of the XS-1 supersonic research rocketplane, 46-062.

46-062 was the first of three XS-1 rocketplanes built by Bell for the U.S. Army Air Corps and the National Advisory Committee for Aeronautics (NACA) to explore flight at speeds at and beyond Mach 1, the speed of sound. The airplane had been rolled out of Bell’s plant at Buffalo, New York, on 27 December 1945. The rocket engine, which was being developed by Reaction Motors, Inc., at Franklin Lakes, New Jersey, was not ready, so the experimental aircraft was carrying ballast in its place for the initial flight tests.

Jack Woolams with the second Bell XS-1, 46-063. (Niagara Aerospace Museum)

The XS-1 was to be air-dropped from altitude by a modified heavy bomber so that its fuel could be used for acceleration to high speeds at altitude, rather than expended climbing from the surface. Bell manufactured B-29B Superfortresses at its Atlanta, Georgia, plant and was therefore very familiar with its capabilities. A B-29, 45-21800, was selected as the drop ship and modified to carry the rocketplane in its bomb bay.

Boeing B-29-96-BW Superfortress 45-21800 carries a Bell XS-1 rocketplane. (Bell Aircraft Museum)

Pinecastle Army Airfield was chosen as the site of the first flight tests because it had a 10,000 foot (3,048 meter) runway and was fairly remote. There was an adjacent bombing range and the base was a proving ground for such aircraft as the Consolidated B-32 Dominator. (Today, Pinecastle A.A.F. is known as Orlando International Airport, MCO.)

Bell XS-1 46-062 was placed in a pit at Pinecastle A.A.F. so that the B-29 drop ship in the background could be positioned over it. (NASA)
Bell XS-1 46-062 was placed in a pit at Pinecastle A.A.F. so that the B-29 drop ship in the background could be positioned over it. (NASA)

The B-29 carrying the XS-1 took off from Pinecastle at 11:15 a.m., and began its climb to altitude. Woolams was in the forward crew compartment. As the bomber reached approximately 10,000 feet (3,048 meters), he entered the bomb bay and climbed down into the cockpit of the research aircraft. At the drop altitude, the B-29 was flying at 180 miles per hour (290 kilometers per hour) with the inboard propellers feathered and flaps lowered to 20°.

The XS-1 dropped away smoothly. Woolams flew the rocketplane to a maximum 275 miles per hour (443 kilometers per hour), indicated air speed, during this first glide test. He described the rocketplane as, “solid as a rock, experiencing absolutely no vibration or noise. At the same time, it felt as light as a feather during maneuvers due to the lightness, effectiveness and nice balance between the controls.” Woolams described the visibility from the cockpit as “not good, but adequate.”

The duration of the first glide flight was about ten minutes. Woolams misjudged his approach to Pinecastle and landed slightly short of the runway, on the grass shoulder, but the XS-1 was not damaged.

The conclusion of Woolams’ flight report is highly complementary of the experimental airplane:

11.  Of all the airplanes the writer has flown, only the XP-77 and the Heinkel 162 compare with the XS-1 for maneuverability, control relationship, response to control movements, and lightness of control forces. Although these impressions were rather hastily gained during a flight which lasted only 10 minutes, it is the writer’s opinion that due to these factors and adding to them the security which the pilot feels due to the ruggedness, noiselessness, and smoothness of response of this airplane, it is the most delightful to fly of them all.

—PILOT’S REPORT, Flight 1, by Jack Woolams

Jack Woolams made ten glide flights with 46-062, evaluating its handling characteristics and stability. The aircraft was returned to Bell to have the rocket engine installed, and it was then sent to Muroc Army Airfield in the high desert of southern California for powered flight tests. (Muroc A.A.F. was renamed Edwards Air Force Base in 1949.)

Bell XS-1 46-062 was later named Glamorous Glennis by its military test pilot, Captain Charles E. Yeager, U.S. Army Air Corps. On 14 October 1947, Chuck Yeager flew it to Mach 1.06 at 13,115 meters (43,030 feet). Today the experimental aircraft is on display at the Smithsonian Institution National Air and Space Museum.

The Bell XS-1, later re-designated X-1, was the first of a series of rocket-powered research airplanes which included the Douglas D-558-II Skyrocket, the Bell X-2, and the North American Aviation X-15, which were flown by the U.S. Air Force, U.S. Navy, NACA and its successor, NASA, at Edwards Air Force Base to explore supersonic and hypersonic flight and at altitudes to and beyond the limits of Earth’s atmosphere.

An X-1 under construction at teh Bell Aircraft Corporation plant, Buffalo, New York. (Bell Aircraft Corporation)
An X-1 under construction at the Bell Aircraft Corporation plant, Buffalo, New York. (Bell Aircraft Corporation)

The X-1 has an ogive nose, similar to the shape of a .50-caliber machine gun bullet, and has straight wings and tail surfaces. It is 30 feet, 10.98 inches (9.423 meters) long with a wing span of 28.00 feet (8.534 meters) and overall height of 10 feet, 10.20 inches (3.307 meters).

46-062 was built with a thin 8% aspect ratio wing, while 46-063 had a 10% thick wing. The wings were tapered, having a root chord of 6 feet, 2.2 inches (1.885 meters) and tip chord of 3 feet, 1.1 inches (0.942 meters), resulting in a total area of 130 square feet (12.1 square meters). The wings have an angle of incidence of 2.5° with -1.0° twist and 0° dihedral. The leading edges are swept aft 5.05°.

The horizontal stabilizer has a span of 11.4 feet (3.475 meters) and an area of 26.0 square feet (2.42 square meters). 062’s stabilizer has an aspect ratio of 6%, and 063’s, 5%.

The fuselage cross section is circular. At its widest point, the diameter of the X-1 fuselage is 4 feet, 7 inches (1.397 meters).

46-062 had an empty weight is 6,784.9 pounds (3,077.6 kilograms), but loaded with propellant, oxidizer and its pilot with his equipment, the weight increased to 13,034 pounds (5,912 kilograms).

The X-1 was designed to withstand an ultimate structural load of 18g.

Front view of a Bell XS-1 supersonic research rocketplane at the Bell Aircraft plant, Buffalo, New York. (Bell Aircraft Museum)

The X-1 was powered by a four-chamber Reaction Motors, Inc., 6000C4 (XLR11-RM-3 ) rocket engine which produced 6,000 pounds of thrust (26,689 Newtons). This engine burned a 75/25 mixture of ethyl alcohol and water with liquid oxygen. Fuel capacity is 293 gallons (1,109 liters) of water/alcohol and 311 gallons (1,177 liters) of liquid oxygen. The fuel system was pressurized by nitrogen at 1,500 pounds per square inch (103.4 Bar).

The X-1 was usually dropped from the B-29 flying at 30,000 feet (9,144 meters) and 345 miles per hour (555 kilometers per hour). It fell as much as 1,000 feet (305 meters) before beginning to climb under its own power.

The X-1’s performance was limited by its fuel capacity. Flying at 50,000 feet (15,240 meters), it could reach 916 miles per hour (1,474 kilometers per hour), but at 70,000 feet (21,336 meters) the maximum speed that could be reached was 898 miles per hour (1,445 kilometers per hour). During a maximum climb, fuel would be exhausted as the X-1 reached 74,800 feet (2,799 meters). The absolute ceiling is 87,750 feet (26,746 meters).

Bell X-1 46-062 on the dry lake bed at Muroc Army Airfield, circa 1947. (NASM)

The X-1 had a minimum landing speed of 135 miles per hour (217 kilometers per hour) using 60% flaps.

There were 157 flights with the three X-1 rocket planes. The number one ship, 46-062, Glamorous Glennis, made 78 flights. On 26 March 1948, with Chuck Yeager again in the cockpit, it reached reached Mach 1.45 (957 miles per hour/1,540 kilometers per hour) at 71,900 feet (21,915 meters).

The third X-1, 46-064, made just one glide flight before it was destroyed 9 November 1951 in an accidental explosion.

The second X-1, 46-063, was later modified to the X-1E. It is on display at the NASA Dryden Research Center at Edwards Air Force Base. Glamorous Glennis is on display at the Smithsonian Institution National Air and Space Museum, next to Charles A. Lindbergh’s Spirit of St. Louis.

Bell X-1, 46-062, Glamorous Glennis, on display at the National Air and Space Museum, Washington, D.C. (NASM)
Bell X-1 46-062, Glamorous Glennis, on display at the National Air and Space Museum, Washington, D.C. (NASM)

Jack Valentine Woolams was born on Valentine’s Day, 14 February 1917, at San Francisco, California. He was the second of three children of Leonard Alfred Woolams, a corporate comptroller, and Elsa Mathilda Cellarius Woolams. He grew up in San Rafael, California, and graduated from Tamalpais School in 1935.

Jack Woolams, 1941

After two years of study at The University of Chicago, in 1937 Woolams entered the Air Corps, U.S. Army, as an aviation cadet. He trained as a pilot at Kelly Field, San Antonio, Texas. On graduation, 16 June 1938, he was discharged as an aviation cadet and commissioned as a second lieutenant, Air Reserve. He was assigned to Barksdale Army Air Field, Louisiana, where he flew the Boeing P-26 and Curtiss P-36 Hawk.

On 10 February 1939, Lieutenant Woolams was one of three Air Corps officers thrown into the waters of Cross Lake, near Shreveport, Louisiana, when the boat, owned by Woolams, capsized in 4 foot (1.2 meters) waves. Woolams and Lieutenant J.E. Bowen were rescued after 4 hours in the water, but the third man, Lieutenant Wilbur D. Camp, died of exposure.

Lieutenant Woolams transferred from active duty to inactive reserve status in September 1939 in order to pursue his college education at The University of Chicago, where he was a member of the Alpha Delta Phi (ΑΔΦ) fraternity. While at U. of C., he played on the university’s football and baseball teams, and was a member of the dramatic society. Woolams graduated 18 July 1941 with a Bachelor of Arts (A.B.) degree in Economics.

Mr. and Mrs. Jack V. Woolams, 16 June1941. (Unattributed)

Jack Woolams married Miss Mary Margaret Mayer at the bride’s home in Riverside, Illinois, 16 June 1941. They would have three children. Miss Mayer was also a 1941 graduate from the University of Chicago. She had been Woolams’ student in the Civilian Pilot Training Program.

Woolams became a production test pilot for the Bell Aircraft Corporation at Buffalo, New York. He tested newly-built Bell P-39 Airacobra fighters. As he became more experienced, he transitioned to experimental testing with the P-39, P-63 King Cobra, and the jet-powered P-59 Airacomet.

Jack Valentine Woolams, Chief Experimental Test Pilot, Bell Aircraft Corporation, circa 1946. (Niagara Aerospace Museum)

On 28 September 1942, Jack Woolams flew a highly-modified Bell P-39D-1-BE Airacobra, 41-38287, from March Field, near Riverside, California, to Bolling Field, Washington, D.C., non-stop. The duration of the flight was approximately 11 hours. The modifications were intended to allow P-39s to be flown across the Pacific Ocean to Hawaii and on to the Soviet Union for delivery under Lend Lease.

During the summer of 1943, Woolams flew the first Bell YP-59A Airacomet, 42-108771, to an altitude of 47,600 feet (14,508 meters) near Muroc Army Air Field in California.

On 5 January 1945, Woolams was forced to bail out of a Bell P-59A-1-BE, 44-22616. He suffered a deep laceration to his head as he left the airplane. He lost his flight boots when the parachute opened, and on landing, had to walk barefoot through knee-deep snow for several miles to reach a farm house. The deep snow prevented the company’s ambulance from getting to Woolams. Bell Aircraft president Lawrence D. Bell sent the company’s second prototype Bell Model 30 helicopter, NX41868, flown by test pilot Floyd Carlson, to transport a doctor, J.A. Marriott, M.D., to the location. Another Bell test pilot, Joe Mashman, circled overhead in a P-63 King Cobra to provide a communications link. Later in the day, an ambulance was able to get through the snow to take Woolams to a hospital.

Wreckage of Bell P-59A-1-BE Airacomet 44-22616. Jack Woolams bailed out of this airplane 5 January 1945. (Niagara Aerospace Museum)

Woolams was scheduled to make the first powered flight of the XS-1 during October 1946.

Jack Woolams was killed Friday, 30 August 1946, when his red Thompson Trophy racer, Cobra I, a modified 2,000-horsepower Bell P-39Q Airacobra, crashed into Lake Ontario at over 400 miles per hour. His body was recovered by the U.S. Coast Guard four days later.

Bell Aircraft Corporation experimental test pilots Jack Woolams and Tex Johnston with their modified Bell P-39Q Airacobras, Cobra I and Cobra II. (Niagara Aerospace Museum)

¹ This article was originally dated 19 January 1946. There were known discrepancies as to the date of the first flight from various reliable sources. Recently discovered test flight reports, provided to TDiA by Mr. Roy T. Lindberg, Historian of the Niagara Aerospace Museum, Niagara Falls, New York, have confirmed that the date of the first flight was actually 25 January 1946. The article has been been revised accordingly, as well as to incorporate new information from these reports.

TDiA is indebted to Mr. Lindberg for providing this and other documentation.

© 2019, Bryan R. Swopes

6 November 1958

Bell X-1E 46-063 on Rogers Dry Lake. (NASA)
Bell X-1E 46-063 on Rogers Dry Lake, 1955. (NASA)

6 November 1958: NASA Research Test Pilot John B. (Jack) McKay made the final flight of the X-1 rocketplane program, which had begun twelve years earlier.

Bell X-1E 46-063 made its 26th and final flight after being dropped from a Boeing B-29 Superfortress over Edwards Air Force Base on a flight to test a new rocket fuel.

John B. McKay, NACA/NASA Research Test Pilot. (NASA)
John B. McKay, NACA/NASA Research Test Pilot. (NASA)

When the aircraft was inspected after the flight, a crack was found in a structural bulkhead. A decision was made to retire the X-1E and the flight test program was ended.

The X-1E had been modified from the third XS-1, 46-063. It used a thinner wing and had an improved fuel system. The most obvious visible difference is the cockpit, which was changed to provide for an ejection seat. Hundreds of sensors were built into the aircraft’s surfaces to measure air pressure and temperature.

The Bell X-1E was 31 feet (9.449 meters) long, with a wingspan of 22 feet, 10 inches (6.960 meters). The rocketplane’s empty weight was 6,850 pounds (3,107 kilograms) and fully loaded, it weighed 14,750 pounds (6,690 kilograms). The rocketplane was powered by a Reaction Motors XLR11-RM-5 rocket engine which produced 6,000 pounds of thrust (26.689 kilonewtons). The engine burned ethyl alcohol and liquid oxygen. The X-1E carried enough propellants for 4 minutes, 45 seconds burn.

The Bell X-1E rocketplane being loaded into a Boeing B-29 Superfortress mothership for another test flight. (NASA)
The Bell X-1E rocketplane being loaded into NACA 800, a Boeing B-29-96-BW Superfortress mothership, 45-21800, for another test flight. (NASA)

The early aircraft, the XS-1 (later redesignated X-1), which U.S. Air Force test pilot Charles E. (“Chuck”) Yeager flew faster than sound on 14 October 1947, were intended to explore flight in the high subsonic and low supersonic range. There were three X-1 rocketplanes. Yeager’s Glamorous Glennis was 46-062. The X-1D (which was destroyed in an accidental explosion after a single glide flight) and the X-1E were built to investigate the effects of frictional aerodynamic heating in the higher supersonic ranges from Mach 1 to Mach 2.

Bell X-1E loaded aboard Boeing B-29 Superfortress, circa 1955. (NASA)
Bell X-1E 46-063 loaded aboard NACA 800, a Boeing B-29-96-BW Superfortress, 45-21800, circa 1955. (NASA)

The X-1E reached its fastest speed with NASA test pilot Joseph Albert Walker, at Mach 2.24 (1,450 miles per hour/2,334 kilometers per hour), 8 October 1957. Walker also flew it to its peak altitude, 70,046 feet (21,350 meters) on 14 May 1958.

NACA test pilot Joseph Albert Walker made 21 of the X-1E's 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)
NACA test pilot Joseph Albert Walker made 21 of the X-1E’s 26 flights. In this photograph, Joe Walker is wearing a David Clark Co. T-1 capstan-type partial-pressure suit with a K-1 helmet for protection at high altitudes. (NASA)

There were a total of 236 flights made by the X-1, X-1A, X-1B, X-1D and X-1E. The X-1 program was sponsored by the National Advisory Committee on Aeronautics, NACA, which became the National Aeronautics and Space Administration, NASA, on 29 June 1958.

The X-1E is on display in front of the NASA administration building at the Dryden Flight Research Center, Edwards Air Force Base, California.Bell X-1E 46-063 on display at Dryden Flight Research Center© 2016, Bryan R. Swopes

14 October 1977

Major General Thomas Stafford with Brigadier General (Retired) Charles E. Yeager, seated in a Lockheed F-104 Starfighter at Edwards AFB, 14 October 1977. (Associated Press)

14 October 1977: On the Thirtieth Anniversary of his historic supersonic flight in the Bell X-1, Brigadier General Charles E. (“Chuck”) Yeager, U.S. Air Force (Retired), returned to Edwards Air Force Base where he flew a Lockheed F-104 Starfighter to Mach 1.5.

Chuck Yeager and Bell X-1 46-062 glide back to Edwards Air Force Base for landing. (U.S. Air Force)

© 2016, Bryan R. Swopes

14 October 1947

Captain Charles Elwood (“Chuck”) Yeager, U.S. Air Force, with “Glamorous Glennis,” the Bell XS-1. (U.S. Air Force/National Air and Space Museum)

14 October 1947: At approximately 10:00 a.m., a four-engine Boeing B-29 Superfortress heavy bomber, piloted by Major Robert L. Cardenas, took off from Muroc Air Force Base (now known as Edwards Air Force Base) in the high desert north of Los Angeles, California. The B-29’s bomb bay had been modified to carry the Bell XS-1, a rocket-powered airplane designed to investigate flight at speeds near the Speed of Sound (Mach 1).

A Bell XS-1 rocketplane carried aloft in the bomb bay of a modified Boeing B-29-96-BW Superfortress, serial number 45-21800. (NASA)
Captain Chuck Yeager with the Bell XS-1 on Muroc Dry Lake, 1947. (Chuck Yeager collection)

Air Force test pilot Captain Charles Elwood (“Chuck”) Yeager, a World War II fighter ace, was the U.S. Air Force pilot for this project. The X-1 airplane had been previously flown by company test pilots Jack Woolams and Chalmers Goodlin. Two more X-1 aircraft were built by Bell, and the second, 46-063, had already begun its flight testing.

Captain Yeager had made three glide flights and this was to be his ninth powered flight. Like his P-51 Mustang fighters, he had named this airplane after his wife, Glamorous Glennis.

Bob Cardenas climbed to 20,000 feet (6,096 meters) and then put the B-29 into a shallow dive to gain speed. In his autobiography, Yeager wrote:

One minute to drop. [Jack] Ridley flashed the word from the copilot’s seat in the mother ship. . . Major Cardenas, the driver, starts counting backwards from ten. C-r-r-ack. The bomb shackle release jolts you up from your seat, and as you sail out of the dark bomb bay the sun explodes in brightness. You’re looking at the sky. Wrong! You should have dropped level. The dive speed was too slow, and they dropped you in a nose-up stall. . .

Cockpit of Bell X-1, 46-062, Glamorous Glennis, on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

“I fought it with the control wheel for about five hundred feet, and finally got her nose down. The moment we picked up speed I fired all four rocket chambers in rapid sequence. We climbed at .88 Mach. . . I turned off two rocket chambers. At 40,000 feet, we were still climbing at .92 Mach. Leveling off at 42,000 feet, I had thirty percent of my fuel, so I turned on rocket chamber three and immediately reached .96 Mach. . . the faster I got, the smoother the ride.

“Suddenly the Mach needle began to fluctuate. It went up to .965 Mach—then tipped right off the scale. . . .”

—Brigadier General Charles E. Yeager, U.S. Air Force (Retired), Yeager, An Autobiography, by Chuck Yeager and Leo Janos, Bantam Books, New York, 1985, Pages 120, 129–130.

In his official report of the flight, Yeager wrote:

Date: 14 October 1947

Pilot: Captain Charles E. Yeager

Time: 14 Minutes

       9th Powered Flight

1. After normal pilot entry and subsequent climb, the XS-1 was dropped from the B-29 at 20,000′and at 250 MPH ISA. This was slower than desired.

2. Immediately after drop, all four cylinders were turned on in rapid sequence, their operation stabilizing at the chamber and line pressure reported in the last flight. The ensuing climb was made at .85–.88 Mach, and, as usual, it was necessary to change the stabilizer setting to 2 degrees nose down from its pre-drop setting of 1 degree nose down. Two cylinders were turned off between 35,000′ and 40,000′,  but speed had increased to .92 Mach as the airplane was leveled off at 42,000′. Incidentally, during the slight push-over at this altitude, the lox line pressure dropped perhaps 40 psi and the resultant rich mixture caused chamber pressures to decrease slightly. The effect was only momentary, occurring at .6 G’s, and all pressures returned to normal at 1 G.

3. In anticipation of the decrease in elevator effectiveness at speeds above .93 Mach, longitudinal control by means of the stabilizer was tried during the climb at .83, .88, and .92 Mach. The stabilizer was moved in increments of 1/4–1/3 degree and proved to be very effective; also, no change in effectiveness was noticed at the different speeds.

4. At 42,000′ in approximately level flight, a third cylinder was turned on. Acceleration was rapid and speed increased to .98 mach. The needle of the machmeter fluctuated at this reading momentarily, then passed off the scale. Assuming that the offscale reading remained linear, it is estimated that 1.05 Mach was attained at this time. Approximately 30% of fuel and lox remained when this speed was reached and the meter was turned off.

5. While the usual light buffet and instability characteristics were encountered in the .88–.90 Mach range and elevator effectiveness was very greatly decreased at .94 Mach, stability about all three axes was good as speed increased and elevator effectiveness was regained above .97 Mach. As speed decreased after turning off the motor, the various phenomena occurred n reverse sequence at the usual speed, and in addition, a slight longitudinal porpoising was noticed from .98–.96 Mach which controllable by the elevators alone. Incidentally, the stability setting was not changed from its 2 degree nose down position after trial at .92 Mach.

6. After jettisoning the remaining fuel and lox a 1 G stall was performed at 45,000′. The flight was concluded by the subsequent glide and a normal landing on the lake bed.

CHARLES E. YEAGER
Capt., Air Corps

Chuck Yeager and flown the XS-1 through “the sound barrier,” something many experts had believed might not be possible. His maximum speed during this flight was Mach 1.06 (699.4 miles per hour/1,125.7 kilometers per hour).

Bell X-1 46-062 in flight. Note the “shock diamonds” visible in the rocket engine’s exhaust. (Photograph by Lieutenant Robert A. Hoover, U.S. Air Force)

The Bell XS-1, later re-designated X-1, was the first of a series of rocket powered research airplanes which included the Douglas D-558-II Skyrocket, the Bell X-2, and the North American Aviation X-15, which were flown by the U.S. Air Force, U.S. Navy, NACA and its successor, NASA, at Edwards Air Force Base to explore supersonic and hypersonic flight and at altitudes to and beyond the limits of Earth’s atmosphere.

The X-1 is shaped like a bullet and has straight wings and tail surfaces. It is 30 feet, 10.98 inches (9.423 meters) long with a wing span of 28.00 feet (8.534 meters) and overall height of 10 feet, 10.20 inches (3.307 meters). Total wing area is 102.5 square feet ( 9.5 square meters). At its widest point, the diameter of the X-1 fuselage is 4 feet, 7 inches (1.397 meters). The empty weight is 6,784.9 pounds (3,077.6 kilograms), but loaded with propellant, oxidizer and its pilot with his equipment, the weight increased to 13,034 pounds (5,912 kilograms). The X-1 was designed to withstand an ultimate structural load of 18g.

The X-1 is powered by a four-chamber Reaction Motors, Inc., XLR11-RM-3 rocket engine which produced 6,000 pounds of thrust (26,689 Newtons). This engine burns a mixture of ethyl alcohol and water with liquid oxygen. Fuel capacity is 293 gallons (1,109 liters) of water/alcohol and 311 gallons (1,177 liters) of liquid oxygen. The fuel system is pressurized by nitrogen at 1,500 pounds per square inch (10,342 kilopascals).

The X-1 was usually dropped from a B-29 flying at 30,000 feet (9,144 meters) and 345 miles per hour (555 kilometers per hour). It fell as much as 1,000 feet (305 meters) before beginning to climb under its own power.

The X-1’s performance was limited by its fuel capacity. Flying at 50,000 feet (15,240 meters), it could reach 916 miles per hour (1,474 kilometers per hour), but at 70,000 feet (21,336 meters) the maximum speed that could be reached was 898 miles per hour (1,445 kilometers per hour). During a maximum climb, fuel would be exhausted as the X-1 reached 74,800 feet (2,799 meters). The absolute ceiling is 87,750 feet (26,746 meters).

The X-1 had a minimum landing speed of 135 miles per hour (217 kilometers per hour) using 60% flaps.

Bell X-1 46-063 with its Boeing B-29 Superfortress carrier aircraft, 45-21800. (Flight Test Historical Foundation)

The three X-1 rocketplanes made a total of 157 flights with the three X-1. The number one ship, Glamorous Glennis, made 78 flights. On 26 March 1948, with Chuck Yeager again in the cockpit, it reached reached Mach 1.45 (957 miles per hour/1,540 kilometers per hour) at 71,900 feet (21,915 meters).

The third X-1, 46-064, made just one glide flight before it was destroyed 9 November 1951 in an accidental explosion.

The second X-1, 46-063, was later modified to the X-1E. It is on display at the NASA Dryden Research Center at Edwards Air Force Base.

Glamorous Glennis is on display at the Smithsonian Institution National Air and Space Museum, next to Charles A. Lindbergh’s Spirit of St. Louis.

Bell X-1, 46-062, Glamorous Glennis, on display in the Milestones of Flight gallery at the National Air and Space Museum, Washington, D.C. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

© 2017, Bryan R. Swopes

Albert Scott Crossfield, Jr. (2 October 1921–19 April 2006)

Albert Scott Crossfield, aeronautical engineer and test pilot, 1921–2006. (Jet Pilot Overseas)
Albert Scott Crossfield, Jr., Aeronautical Engineer and Test Pilot, 1921–2006. (Jet Pilot Overseas)

Albert Scott Crossfield, Jr., was born at Berkeley, California, 2 October 1921, the second of three children of Albert Scott Crossfield and Lucia Dwyer Scott Crossfield. (“Scott Crossfield” is the family name, going back for many generations.) His father was a chemist who was the superintendent of the Union Oil Refinery in Wilmington, California. At the age of 5 years, the younger Scott Crossfield contracted pneumonia. He was comatose for a time and not expected to survive. When he finally began to recover, he was confined to bed for many months. The effects of this illness lasted throughout his childhood.

It was during this time that he developed his interest in aviation. He learned to draw, studied airplanes, and built scale models. Charles F. (“Carl”) Lienesch, who was a pilot for the Union Oil Company, gave Scotty his first ride aboard an airplane at age 6. As a teenager, he took flight lessons in an Inland Sportster at the Wilmington Airport.

Inland R400 Sportster NC267N, circa 1939. (William T. Larkins)

After his family bought a farm in Oregon, Scott Crossfield continued flight lessons and soloed a Curtis Robin at the age of 15. He earned his private pilot certificate at 18. After graduating from high school, “Scotty” helped his father with the family farm before attending the University of Washington as a student of aeronautical engineering. He took a job at Boeing to pay his tuition and support.

Ensign A. S. Crossfield, Jr.

After America’s entry into World War II, Scott Crossfield enlisted in the U.S. Army Air Corps as an aviation cadet, but because of expected delays in training, quickly transferred to the U.S. Navy. He enlisted as a Seaman 2/c in the Navy’s V-5 Program at the Naval Reserve Aviation Base, Seattle, Washington, on 21 February 1942. He began Primary Flight Training there, 7 May 1942. Scotty completed military flight training and was commissioned an Ensign, United States Navy, in December 1942.

On 21 April 1943, Ensign Albert Scott Crossfield, U.S. Navy, married Miss Alice Virginia Knoph at Corpus Christi, Texas.

Promoted to lieutenant (junior grade) with date of precedence 21 March 1944.

During World War II, Scott Crossfield served as a fighter pilot, flight and gunnery instructor, flying the Chance Vought F4U Corsair and Grumman F6F Hellcat. Though he was assigned to Fighting Squadron FIFTY-ONE (VF-51) aboard the Independence-class light aircraft carrier USS Langley (CVL-27), he did not serve in combat. He was promoted to the rank of lieutenant 1 August 1945. Scotty was released from active duty 31 December 1945. After the war he joined a Naval Reserve squadron and flew the Goodyear Aircraft Co. FG-1D Corsair at NAS Sand Point, Washington.

A Goodyear FG-1D Corsair, Bu. No. 92150, unfolding its wings at NAS Sand Point, circa late 1940s. The orange band around the fuselage shows that this airplane is assigned to a Naval Reserve squadron. (U.S. Navy)

During this time he resumed his education at the University of Washington and graduated with a bachelor’s degree in aeronautical engineering in 1949, and a master’s degree in 1950. As a graduate student he was the operator of the university’s Kirsten Aeronautical Laboratory wind tunnel.

The NACA High Speed Flight Station, 24 August 1954. The Boeing P2B-1S Superfortress is parked at the northeast corner of the ramp. (NASA)

In 1950 Scott Crossfield joined the National Advisory Committee for Aeronautics (NACA, the predecessor of NASA) as an Aeronautical Research Pilot at the NACA High Speed Flight Station, Edwards Air Force Base, California. He flew many high-performance jet aircraft like the North American Aviation F-100 Super Sabre, and experimental airplanes such as the Convair XF-92, Douglas X-3, Bell X-4 and X-5. He also flew the research rocket planes, making 10 rocket flights in the Bell X-1 and 77 in the Douglas D-558-II Skyrocket.

Douglas D-558-2 Bu. No. 37974 dropped from Boeing P2B-S1 Superfortress 84029, 1 January 1956. (NASA)
Douglas D-558-2 Skyrocket, Bu. No. 37974, is dropped from Boeing P2B-S1 Superfortress, Bu. No. 84029, 1 January 1956. (NASA)

On 20 November 1953, Scott Crossfield became the first pilot to fly faster than twice the speed of sound (Mach 2). The D-558-II was carried aloft by a Boeing P2B-1S Superfortress drop ship (a four-engine B-29 long range heavy bomber which had been transferred from the U.S. Air Force to the Navy, then heavily modified by Douglas) to 32,000 feet (9,754 meters) and then released. Scotty fired the LR8 rocket engine and climbed to 72,000 feet (21,945 meters). He put the Skyrocket into a shallow dive and, still accelerating, passed Mach 2 at 62,000 feet (18,898 meters). After the rocket engine’s fuel was expended, he flew the rocketplane to a glide landing on Rogers Dry Lake.

In 1955 Crossfield left NACA and joined North American Aviation, Inc., as Chief Engineering Test Pilot. He planned and participated in the design and operation of the X-15 hypersonic research rocketplane for the Air Force and NASA. He also worked closely with the David Clark Co., in the development of the project’s full-pressure suits.

Scott Crossfield testing an experimental David Clark Co. XMC-2 full-pressure suit in a thermal chamber at Wright Field. (Ralph Morse, LIFE Magazine/National Archives College Park Collection)

Milton O. Thompson, another X-15 test pilot, wrote in At the Edge of Space,

“. . . he was intimately involved in the design of the aircraft and contributed immensely to the success of the design, as a result of his extensive rocket airplane experience. . . Scott was responsible for a number of other excellent operational and safety features built into the aircraft. Thus, one might give Scott credit for much of the success of the flight program. . . .”

At the Edge of Space, by Milton O. Thompson, Smithsonian Institution Press, Washington and New York, 1992, at Page 3

Scott Crossfield, NAA Chief Engineering Test Pilot; Edmond Ross Cokeley, NAA Director of Flight Test;  and Charles H. Feltz, NAA Chief Engineer, with an X-15 hypersonic research rocketplane. (North American Aviation via Jet Pilot Overseas)

In 1959–1960, Scott Crossfield flew all of the contractor’s demonstration phase flights for the X-15, including 16 captive carry flights under the wing of the NB-52A Stratofortress while systems were tested and evaluated, one glide flight, and thirteen powered flights. He reached a a maximum altitude of 88,116 feet (26,858 meters) on Flight 6, and a maximum speed of Mach 2.97 (1,960 miles per hour/3,154 kilometers per hour) on Flight 26. The X-15 was then turned over to NASA and the Air Force. The X-15 Program involved a total of 199 flights from 1959 until 1968.

A. Scott Crossfield, wearing a David Clark Co. XMC-2 full-pressure suit, which he helped to design and test, with the first of three North American X-15s, 56-6670. (North American Aviation, Inc.)

After leaving the X-15 Program, Scott Crossfield continued as a Systems Director with North American Aviation, Inc., working on the Apollo Command and Service Module and the S-IVB second stage of the Saturn V rocket. He left North American in the late ’60s and served as an executive with Eastern Air Lines and Hawker Siddeley. He also continued as a aeronautical engineering consultant to private industry and government.

Among many other awards, Scott Crossfield was received the Harmon Trophy, the Collier Trophy, and the Iven C. Kincheloe Award of the Society of Experimental Test Pilots..

Scott Crossfield's 1962 Cessna 210A Centurion, photographed at Santa Monica Airport, California, 26 September 1999. (AirNikon Collection, Pima Air & Space Museum, Tucson, Arizona via airliners.net)
Scott Crossfield’s Cessna 210A Centurion, N6579X, photographed at Santa Monica Airport, California, 26 September 1999. (AirNikon Collection, Pima Air & Space Museum, Tucson, Arizona via airliners.net, used with permission)

In 1980 Crossfield resumed flying when he purchased a 1960 Cessna 210A Centurion, N6579X, serial number 21057579. This was a single-engine, four-place light airplane, powered by an air-cooled Continental six-cylinder engine. He had flown more than 2,000 hours in this airplane when it crashed during a severe thunderstorm, 19 April 2006, while on a flight from Prattville, Alabama, to Manassas, Virginia.

Albert Scott Crossfield, Jr., was killed. His remains are interred at the Arlington National Cemetery, Arlington, Virginia.

Albert Scott Crossfield, Jr., Test Pilot. (LIFE Magazine via Jet Pilot Overseas)

Highly recommended: Always Another Dawn: The Story Of A Rocket Test Pilot, by Albert Scott Crossfield and Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960.

© 2018, Bryan R. Swopes