Tag Archives: Rocketdyne Division of North American Aviation Inc.

14 November 1969, 16:22:00.68 UTC, T plus 000.00.00.68

Apollo 12 Saturn V (AS-507) lifts off from Launch Complex 39A at the Kennedy Space Center, Cape Canaveral, Florida, at 16:22:00 UTC, 14 November 1969. (NASA image scanned and remastered by Dan Beaumont)

14 November 1969: At 16:22:00.68 UTC (11:22:00 a.m., Eastern Standard Time), the Apollo 12 Saturn V (AS-507) lifted off from Launch Complex 39A, Kennedy Space Center, Cape Canaveral, Florida.

This was the second manned space flight to the Moon. The flight crew were Commander Charles “Pete” Conrad, Jr., United States Navy, Mission Commander; Commander Richard F. Gordon, Jr., U.S. Navy, Command Module Pilot; Commander Alan L. Bean, U.S. Navy, Lunar Module Pilot.

Their destination was Oceanus Procellarum.

The crew of Apollo 12: Charles “Pete” Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean. (NASA)

Two lightning strikes 36.5 seconds after liftoff caused the spacecraft’s automatic systems to shut down three fuel cells, leaving Apollo 12 operating on battery power. A third electrical disturbance at T + 52 seconds caused the “8 ball” attitude indicator in the cockpit to fail. A quick thinking ground controller, the “EECOM,” called “Try SCE to Aux.” Alan Bean recalled this from a simulation a year earlier, found the correct switch and restored the failed systems.

The lightning discharge was caused by the Apollo 12/Saturn V vehicle accelerating through rain at approximately 6,300 feet (1,950 meters). There were no thunderstorms in the area. Post-flight analysis indicates that it is probable that the lightning discharge started at the top of the Apollo 12/Saturn V vehicle. Energy of the discharge was estimated at 10⁴–10⁸ joules.

Lightning discharge near Launch Complex 39A (NASA)

Soon after passing Mach 1, the Saturn V rocket encountered the maximum dynamic pressure (“Max Q”) of 682.95 pounds per square foot (0.327 Bar) as it accelerated through the atmosphere.

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, .2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed approximately 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust (6770.19 kilonewtons), each, for a total of 7,610,000 pounds of thrust at Sea Level (33,851 kilonewtons).² These engines were ignited 6.50 seconds prior to Range Zero and the outer four burned for 161.74 seconds. The center engine was shut down after 135.24 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust (1,022.01 kilonewtons), and combined, 1,161,250 pounds of thrust (5,165.5 kilonewtons).³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant. The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. Only three still exist. One, on display at the Johnson Space Center, Houston, Texas, is made up of the the S-IC first stage of SA-514, S-II second stage of SA-515, and S-IVB third stage of SA-513. It is the only one consisting of flight-certified hardware. The Apollo Command and Service Module is CSM-115, originally intended for the Apollo 19 mission.

¹ The AS-507 total vehicle mass at First Stage Ignition (T – 6.50 seconds) was 6,137,868  pounds (2,784,090 kilograms).

² Post-flight analysis gave the total thrust of AS-507’s S-IC stage as 7,594,000 pounds of thrust (33,780 kilonewtons).

³ Post-flight analysis gave the total thrust of AS-507’s S-II stage as 1,161,534 pounds of thrust (5,166.8 kilonewtons).

⁴ Post-flight analysis gave the total thrust of AS-507’s S-IVB stage as 206,956 pounds of thrust (920.6 kilonewtons) during the first burn; 207,688 pounds (923.8 kilonewtons) during the second burn.

© 2018, Bryan R. Swopes

9 November 1967, 12:00:01.263 UTC, T plus 0.263

Apollo 4 Saturn V (AS-501) on the launch pad at sunset, the evening before launch, 8 November 1967. (NASA)
Apollo 4 Saturn V (AS-501) on the launch pad at sunset, the evening before launch, 8 November 1967. (NASA)

9 November 1967: The first flight of a Saturn V took place when the unmanned Apollo 4/Saturn V (AS-501) was launched from Pad 39A at the Kennedy Space Center, Cape Canaveral, Florida. The rocket lifted off at 12:00:01.263 UTC.

AS-501 consisted of the first Saturn V launch vehicle, SA-501, with Apollo Spacecraft 017 (a Block I vehicle with Block II upgrades), and included the Launch Escape Tower, Command Module, Service Module, Lunar Module Adapter, and Lunar Module Test Article LTA-10R).

The Saturn V rocket was a three-stage, liquid-fueled heavy launch vehicle. Fully assembled with the Apollo Command and Service Module, it stood 363 feet, 0.15 inches (110.64621 meters) tall, from the tip of the escape tower to the bottom of the F-1 engines. The first and second stages were 33 feet, 1.2 inches (10.089 meters) in diameter. Fully loaded and fueled the rocket weighed 6,200,000 pounds (2,948,350 kilograms).¹ It could lift a payload of 260,000 pounds (117,934 kilograms) to Low Earth Orbit.

The first stage was designated S-IC. It was designed to lift the entire rocket to an altitude of 220,000 feet (67,056 meters) and accelerate to a speed of more than 5,100 miles per hour (8,280 kilometers per hour). The S-IC stage was built by Boeing at the Michoud Assembly Facility, New Orleans, Louisiana. It was 138 feet (42.062 meters) tall and had an empty weight of 290,000 pounds (131,542 kilograms). Fully fueled with 203,400 gallons (770,000 liters) of RP-1 and 318,065 gallons (1,204,000 liters) of liquid oxygen, the stage weighed 5,100,000 pounds (2,131,322 kilograms). It was propelled by five Rocketdyne F-1 engines, producing 1,522,000 pounds of thrust, each, for a total of 7,610,000 pounds of thrust at Sea Level.² These engines were ignited seven seconds prior to lift off and the outer four burned for 168 seconds. The center engine was shut down after 142 seconds to reduce the rate of acceleration. The F-1 engines were built by the Rocketdyne Division of North American Aviation at Canoga Park, California.

A Rocketdyne F-1 engine is being installed on a Saturn S-IC first stage. (NASA)

The S-II second stage was built by North American Aviation at Seal Beach, California. It was 81 feet, 7 inches (24.87 meters) tall and had the same diameter as the first stage. The second stage weighed 80,000 pounds (36,000 kilograms) empty and 1,060,000 pounds loaded. The propellant for the S-II was liquid hydrogen and liquid oxygen. The stage was powered by five Rocketdyne J-2 engines, also built at Canoga Park. Each engine produced 232,250 pounds of thrust, and combined, 1,161,250 pounds of thrust.³

The Saturn V third stage was designated S-IVB. It was built by Douglas Aircraft Company at Huntington Beach, California. The S-IVB was 58 feet, 7 inches (17.86 meters) tall with a diameter of 21 feet, 8 inches (6.604 meters). It had a dry weight of 23,000 pounds (10,000 kilograms) and fully fueled weighed 262,000 pounds. The third stage had one J-2 engine and also used liquid hydrogen and liquid oxygen for propellant.⁴ The S-IVB would place the Command and Service Module into Low Earth Orbit, then, when all was ready, the J-2 would be restarted for the Trans Lunar Injection.

Eighteen Saturn V rockets were built. They were the most powerful machines ever built by man.

Apollo 4 Saturn V AS-501 lifts off at 12:00:01 UTC, 9 November 1967. (NASA)
Apollo 4 Saturn V (AS-501) lifts off at 12:00:01 UTC, 9 November 1967. (NASA)

¹ The AS-501 total vehicle mass at First Motion was 6,137,868 pounds (2,784,090 kilograms).

²  Post-flight analysis gave the total thrust of AS-501’s S-IC stage as 7,728,734.5 pounds of thrust (34,379.1 kilonewtons).

³ Post-flight analysis gave the total thrust of AS-501’s S-II stage as 1,086,396 pounds of thrust (4,832.5 kilonewtons).

⁴ Post-flight analysis gave the total thrust of AS-501’s S-IVB stage as 222,384 pounds of thrust (989.2 kilonewtons) during the first burn; 224,001 pounds (996.4 kilonewtons) during the second burn.

© 2017, Bryan R. Swopes

27 October 1961: 15:06:04 UTC, T minus Zero

The first Saturn C-1 three-stage heavy-lift rocket, SA-1, on the launch pad at Cape Canaveral, 27 October 1961. The gantry tower has been pulled back. (NASA)

27 October 1961: At 15:06:04 UTC, (10:06 a.m., EST), 3.97 seconds after ignition,  the first Saturn C-1 heavy launch vehicle (Saturn I, SA-1) lifted off from Launch Complex 34 at Cape Canaveral, Florida. This was a test of the first stage, only. The rocket’s upper stages were dummies.

At about 109 seconds after liftoff, four inner engines of the first stage shut down, followed 6 seconds later by the outer four. The rocket continued on a ballistic trajectory.

The Saturn C-1 was bigger than any rocket built up to that time. Early versions of the three-stage rocket were 162 feet, 8.90 inches (49.6037meters) tall, with a maximum diameter of 21 feet, 5.0 inches (6.528 meters). The all-up weight was 1,124,000 pounds (509,838 kilograms).

Saturn S-I first stage at MSFC. (NASA)

The first stage of SA-1 was built by the Marshall Space Flight Center (MSFC) at Huntsville, Alabama. The S-I stage was built up with a Jupiter rocket fuel tank in the center for liquid oxygen, surrounded by eight Redstone rocket tanks. Four were filled with RP-1 propellant, alternating with four filled with LOx. The first stage was powered by eight Rocketdyne Division H-1 engines rated at 165,000 pounds of thrust (733.96 kilonewtons), each. Total thrust for the first stage was 1,320,000 pounds (5,871.65 kilonewtons). The outer four engines were gimbaled to steer the rocket. (The S-I Block I stage had no fins.)

The first stage had been test fired 20 times before being transported to Cape Canaveral by barge.

For the first flight, SA-1, the S-!V second stage and S-V third stage were dummies. The S-IV was filled with 90,000 pounds (40,823 kilograms) of water for ballast. The S-V third stage,  carried 100,000 pounds (45,359 kilograms) of water. Mounted above the third stage was a Jupiter nose cone.

The Saturn C-1 weighed 925,000 pounds (419,573 kilograms). It contained 41,000 gallons (155,200 liters) of RP-1, a refined kerosene fuel, with 66,000 gallons (249,837 liters) of liquid oxygen oxidizer— 600,000 pounds (272,155 kilograms) of propellants.

SA-1 reached a maximum speed of 3,607 miles per hour (5,805 kilometers per hour), and a peak altitude of 84.813 miles (136.493 kilometers). It impacted in the Atlantic Ocean 214.727 miles (345.570 kilometers) down range. The duration of the flight was 15 minutes, 0 seconds. The flight was considered to be nearly flawless.

At Launch Complex 34, the eight Rocketdyne H-1 engines of Saturn C-1 SA-1 are firing. The hold down arms have not yet released. 15:06:04 UTC, 27 October 1961. (NASA)
Saturn SA-1 accelerates after liftoff, 27 October 1961. (NASA 0102626)
Saturn SA-I leaves a trail of fire from the launch pad. (NASA)

© 2018, Bryan R. Swopes

11 October 1968, 15:02:45 UTC, T plus 000:00:00.36

Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34 at the Kennedy Space Center, 15:02:45 UTC, 11 October 1968. (NASA)
Apollo 7 Saturn 1B (AS-205) lifts off from Launch Complex 34, Cape Kennedy Air Force Station, 15:02:45 UTC, 11 October 1968. (NASA)

11 October 1968: at 15:02:45 UTC, Apollo 7, the first manned Apollo spacecraft, was launched aboard a Saturn IB rocket from Launch Complex 34, Cape Kennedy Air Force Station, Cape Kennedy, Florida.

The flight crew were Captain Walter M. (“Wally”) Schirra, United States Navy, the mission commander, on his third space flight; Major Donn F. Eisele, U.S. Air Force, the Command Module Pilot, on his first space flight; and Major R. Walter Cunningham, U.S. Marine Corps, Lunar Module Pilot, also on his first space flight.

The flight crew of Apollo 7, left to right: Donn Eisele, USAF, Capain Walter M. ("Wally") Schirra, USN, and Major R. Walter Cunningham, USMC. (NASA)
The flight crew of Apollo 7, left to right: Major Donn F. Eisele, USAF, Captain Walter M. (“Wally”) Schirra, USN, and Major R. Walter Cunningham, USMCR. (NASA) 

The mission was designed to test the Apollo spacecraft and its systems. A primary goal was the test of the Service Propulsion System (SPS), which included a restartable Aerojet AJ10-137 rocket engine which would place an Apollo Command and Service Module into and out of lunar orbit on upcoming missions.

The SPS engine was built by Aerojet General Corporation, Azusa, California. It burned a hypergolic fuel combination of Aerozine 50 (a variant of hydrazine) and nitrogen tetraoxide, producing 20,500 pounds of thrust. It was designed for a 750 second duration, or 50 restarts during a flight. This engine was fired eight times and operated perfectly.

The duration of the flight of Apollo 7 was 10 days, 20 hours, 9 minutes, 3 seconds, during which it orbited the Earth 163 times. The spacecraft splashed down 22 October 1968, approximately 230 miles (370 kilometers) south south west of Bermuda in the Atlantic Ocean, 8 miles (13 kilometers) from the recovery ship, the aircraft carrier USS Essex (CVS-9).

The Apollo command module was a conical space capsule designed and built by North American Aviation to carry a crew of three on space missions of two weeks or longer. Apollo 7 (CSM-101) was the first Block II capsule, which had been extensively redesigned following the Apollo 1 fire which had resulted in the deaths of three astronauts. The Block II capsule was 10 feet, 7 inches (3.226 meters) tall and 12 feet, 10 inches (3.912 meters) in diameter. It weighed 12,250 pounds (5,557 kilograms). There was 218 cubic feet (6.17 cubic meters) of livable space inside.

Apollo 7/Saturn IB AS-205.at Launch Complex 34.(NASA)

The Saturn IB consisted of an S-IB first stage and an S-IVB second stage. The S-IB was built by Chrysler. It was powered by eight Rocketdyne H-1 engines, burning RP-1 and liquid oxygen. Eight Redstone rocket fuel tanks containing the RP-1 fuel surrounded a Jupiter rocket tank containing the liquid oxygen. Total thrust of the S-IB stage was 1,600,000 pounds and it carried sufficient propellant for 150 seconds of burn. This would lift the vehicle to an altitude of 37 nautical miles (69 kilometers).

The Douglas-built S-IVB stage was powered by one Rocketdyne J-2 engine, fueled by liquid hydrogen and liquid oxygen. The single engine produced 200,000 pounds of thrust and had enough fuel for 480 seconds of burn.

The Saturn IB rocket stood 141 feet, 6 inches (43.13 meters) without payload. It was capable of launching a 46,000 pound (20,865 kilogram) payload to Earth orbit.

Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 Saturn 1B AS-205 in flight above Cape Kennedy Air Force Station, 11 October 1968. (NASA)
Apollo 7 at 35,000 feet (10,668 meters). (NASA)
Staging. Apollo 7 Saturn IB first stage separation. (NASA)

© 2019, Bryan R. Swopes

27 August 1962, 06:53:14 UTC, T minus Zero

Engine ignition of Mariner 2 Atlas Agena B at LC-12, Cape Canaveral AFS, 2:53 a.m., EST, 27 August 1962. (NASA)

27 August 1962: At 06:53:14 UTC (2:53 a.m., Eastern Daylight Time), Mariner 2 lifted off from Launch Complex 12 at Cape Canaveral Air Force Station, Florida, aboard an Atlas-Agena B launch vehicle. This was the second space probe to be sent to Venus.

Mariner 1 and 2 were identical space probes built by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology (Caltech), Pasadena, California. The spacecraft were designed to obtain radiometric temperatures of Venus, and to measure the Interplanetary Magnetic Field.

The Mariner 1 mission failed when the launch vehicle veered off course and was destroyed by the Range Safety Officer, 4 minutes, 53 seconds into its flight, 22 July 1962.

Mariner 2 under final inspection. (NASA)

The Atlas Agena B combined an Atlas LV-3A rocket with an Agena B upper stage. The Atlas was derived from the U.S. Air Force SM-65 Atlas intercontinental ballistic missile (ICBM), and was built by the Convair Division of General Dynamics at San Diego, California.

The height of the total vehicle, including the protective shroud encasing Mariner, 103 feet, 5 inches (31.70 meters). The Atlas Agena B first stage was 20.70 meters (67 feet, 11 inches) long, with a maximum diameter of 3.05 meters (10 feet). The maximum width across the booster section was 4.88 meters (16 feet).

The LV-3A is a “1-½ stage” liquid-fueled rocket with three engines. The “half-stage,” was a booster section consisting of two LR89-NA-5 rocket engines. This stage produced approximately 369,800 pounds of thrust (1,645 kilonewtons). The center, or “sustainer,” engine is a LR105-NA-5, rated at 86,800 pounds of thrust (386 kilonewtons). Both engines were built by the Rocketdyne Division of North American Aviation, Inc., at Canoga Park, California. The Atlas rocket used liquid oxygen and RP-1 (a highly-refined kerosene) propellant. The LV-3A had a total thrust of 456,587 pounds (2,031 kilonewtons).

The second stage was an Agena B, built by Lockheed Missiles and Space Systems, Sunnyvale, California. This engine was capable of being restarted in orbit. The Agena B was 7.20 meters (23 feet, 7 inches) long and had a maximum diameter of 1.50 meters (4 feet, 11 inches). It was also liquid fueled, but used a hypergolic mixture of nitric acid and UDMH. The single engine was a Bell Aerosystems Company LR81-BA-7, with 16,000 pounds of thrust (71.1 kilonewtons).

The Mariner probe was mounted atop the Agena second stage, enclosed in a protective shroud. Mariner had a gross weight of 447 pounds (202.8 kilograms). The probe was 9 feet, 11 inches long (3.02 meters) long, folded for launch, and 5 feet (1.52 meters) wide. When antennas and the solar panels were fully expanded, the spacecraft was 11 feet, 11 inches (3.63 meters) long and had a span of 16 feet, 6 inches (5.03 meters).

Artist's conception of Mariner 2 in interplanetary space. (NASA)
Artist’s conception of Mariner 2 in interplanetary space. (NASA)

At liftoff, all three main engines were burning. After 2minutes, the two-engine booster assembly was jettisoned and the vehicle continued with the center LR105 sustainer. After 4 minutes, 25 seconds, this engine shut down and the Agena second stage separated. At this point, guidance was lost and the vehicle began to roll, but did not deviate significantly from the planned trajectory. About a minute later, guidance was restored and the mission continued.

The Agena B second stage placed the Mariner in a parking orbit at about 118 kilometers (73.3 miles) altitude. 16 minutes, 20 seconds later, the Agena engine was reignited and  Mariner 2 was then placed on a trajectory planned to take it to Venus.

After 3 months, 17 days, at 19:59:28 UTC, 14 December 1962, the probe passed within 34,773 kilometers (21,607 miles) of Venus and measured the planet’s surface and cloud temperatures. It continued inward across the solar system and came within 105,464,560 kilometers (65,432,640 miles) of the sun.

The last transmission was received at 07:00 UTC, 3 January 1963, 129 days into the mission. Mariner 2 remains in orbit around the sun, circling every 292 days.

Mariner 2, carried alloft by Atlas LV3 179D, accelerates past the gantry, 06:53 UTC, 26 August 1962 (NASA)
The Atlas Agena B, carrying Mariner 2, accelerates toward orbit, 06:53 UTC, 27 August 1962 (NASA)

© 2018, Bryan R. Swopes